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We define a Public Announcement Separation Logic, denoted PASL, that allows us to consider
epistemic possible worlds as resources that can be shared or separated, in the spirit of separation
logics. After studying its semantics and illustrating its interest for modelling systems, we provide a
sound and complete tableau calculus that deals with resource, agent and announcement constraints
and give also a countermodel extraction method.

1. Introduction

Epistemic Logic is the logic of knowledge and belief, which models and expresses properties
of knowledge that multiple agents may have about themselves and about each other [Hintikka
1962,Moses et al. 1995,Lenzen 1978,Meyer and van der Hoek 1995,van Ditmarsch et al. 2015].
The models of epistemic logic are based on possible worlds, possible worlds, that encode the
possible states/configurations of a considered system. For instance, in the case of the muddy
children problem [Moses et al. 1995], a possible world corresponds to a distribution of mud
over foreheads of children; in the case of card games, a possible world corresponds to a deal of
cards [van Ditmarsch et al. 2003]; in logics of propositional control, a possible world is a col-
lection of propositional variables that can be controlled by different agents [van der Hoek et al.
2005]. Cards, children, control variables can alternatively be considered as resources, and as such
are entities that can be composed or decomposed into sub-entities. We can combine individual
cards into a deal of cards over agents. We can model the behaviour of individual children observ-
ing other children (that may or may not be muddy), and from their individual behaviour emerges
(sub)group behaviour. Individual agents controlling subsets of variables can form coalitions that
subsequently can control larger sets of variables. Our aim here consists in enriching the models
of epistemic logic with more structure namely by considering the propositions that are evaluated
in possible worlds as resources that be combined or separated. We want also to investigate the
kind of properties that we are then able to express.
In order to model and express properties on resources, various resource logics have been pro-
posed, such as Linear Logic (LL) [Girard 1987] that focuses on resource consumption, and more
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recently the logic of Bunched Implications (BI) and its variants, like Boolean BI (BBI) [Pym
2002], that mainly focus on resource sharing and separation. BI logic combines intuitionistic
propositional additives ( ∧ and →) with intuitionistic propositional multiplicatives (∗ and −∗).
Let us note that in BBI the additives are classical. A key feature of BI as modelling tool, and
hence of its specific model, called Separation Logic (SL) [Ishtiaq and O’Hearn 2001], is its con-
trol of the representation and handling of resources provided by the resource semantics and the
associated proof systems. For instance, the additive conjunction, ∧, is defined by r |= ϕ∧ψ iff
r |= ϕ and r |= ψ. The key point here is that the resource r is shared between the two components
of the disjunction. In contrast, the multiplicative conjunction, ∗, divides the resource between its
propositional components, using a partial commutative monoidal operation, denoted •: r |= ϕ∗ψ

iff there exist r1 and r2 such that r = r1 • r2 and r1 |= ϕ and r2 |= ψ. That is, the monoid speci-
fies a separation of the resources between the components of the conjunction. In SL, where the
semantics is built out of sets of memory locations, the two resource components are required to
be disjoint. BI and BBI are the logical kernels of various separation logics, for instance with re-
sources being memory areas in SL [Ishtiaq and O’Hearn 2001,Reynolds 2002], or with resources
being located on trees [Biri and Galmiche 2003], or of bunched modal logics modelling dynamic
systems that manipulate resources [Collinson and Pym 2009,Courtault and Galmiche 2013].
In this context, as possible worlds are implicitly related to resources, it seems natural to try to
extend some epistemic logics with separation connectives of BBI. A first attempt has been pro-
posed in [Courtault et al. 2015] with an Epistemic Separation Logic (ESL), that is a conservative
extension of Epistemic Logic and also of BBI in which possible worlds are seen as resources.

In this paper we define a new epistemic separation logic, called Public Annoucement Separation
Logic (PASL), that extends this logic with public announcements. After an analysis in order to
fix the semantics of the logic and its right definition we first show that ESL is equally expressive
as PASL. Then we develop an example emphasizing the power of PASL for modelling and com-
plete this study about expresivity with the proposal of new modalities combining epistemic and
separation connectives. The addition of dynamic modalities to a logical language often results in
a so-called larger update expressivity (what kind of model transformations are possible with the
dynamic modalities), even when the formal expressivity of the language (what kind of properties
of models can be expressed in the logical language) remains unchanged. This is indeed the case
for our logic PASL with respect to the prior proposal ESL. The public announcements in PASL
are model transformers, as usual [van Ditmarsch et al. 2007], although on resource monoids spe-
cial care is needed in the semantics of public announcements to guarantee preservation of the
monoid character (as we will see). As ESL does not contain dynamic modalities, obviously the
update expressivity of PASL is larger than that of ESL. On the other hand, the logics are equally
expressive in the usual sense, as any formula with dynamic announcement modalities is equiv-
alent to a formula without (by an axiomatic rewrite procedure, see Proposition 2.5, later). The
advantage of PASL is then the availability of more succinct descriptions of systems behaviour;
more precisely, a PASL specification that after some announcements a certain property holds is
equivalent to some ESL formula, i.e., without announcements, but at the risk of the latter being
exponentially longer than the former. We have not investigated this for PASL, but it is known that
the addition of dynamics to similar logics tends to make them more succinct [Lutz 2006,French
et al 2013].
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In order to complete this study we define a tableaux calculus for the logic, in the spirit of the
tableaux calculi for BI and BBI [Galmiche et al. 2005,Larchey-Wendling 2016], with a focus on
the countermodel extraction. It is based on specific labels and resource, agent and announcement
constraints and adequate closure conditions introduced for this logic. The soundness and com-
pleteness properties are proved with concepts and techniques adapted from our works on modal
extensions of BI and BBI logics [Courtault and Galmiche 2015] and a countermodel extraction
method is also provided. Viewed from a different perspective, our proposal is also an attempt to
enrich some separation logics, here BBI, with uncertainty over composition and decomposition
of resources, and by different agents. Here we consider separation models through BBI logic and
its general semantics but we expect to study such an extension with other resource logics and
models with separation, like SL based on memory models and dedicated to program verification.
Let us note that we consider BBI logic in which the conjunction is distributive over the dis-
junction, property that does not hold in LL. Concerning the links between Epistemic Logic and
resource management we can mention some works based on Linear Logic that attempt to capture
agent knowledge evolutions due to epistemic actions [Marion and Sadrzadeh 2003,Baltag et al.
2006], but these works consider the epistemic actions as resources (but not the worlds). Com-
pared with such works, our epistemic separation logic considers the possible (epistemic) worlds
as resources, including sharing and separation connectives that allow us to express properties,
like for instance (A∧ (B∨C))−∗KaD that means that “the addition of a resource that satisfies
the property A and also the property B or C, gives to the agent a the knowledge that D holds”.
Future work could be devoted to the study of other epistemic separation logics with epistemic
actions [Baltag et al. 2006], or updates [Herzig 2013]. Finally, there is a relation of our work
with resource-bounded logics of agency. Logics of agency such as ATL [Alur et al. 2002] are
very different from dynamic epistemic logics that are essentially logics of observation and that
lack agency. In extensions of ATL-like logics one can measure the cost of coalitions performing
actions as consumption of resources, and other features model the production of resources. These
matters have been investigated in, for example, [Alechina et al. 2017].

2. A Public Announcement Separation Logic

In this section we first present an Epistemic Separation Logic, called ESL, that can be seen as an
extension of Boolean BI with a knowledge modality [Courtault et al. 2015] and then we extend
the logic with operators for knowledge change, namely public announcements, and then propose
a new logic called Public Announcement Separation Logic (PASL).

2.1. An Epistemic Separation Logic (ESL)

We assume a finite set of agents A, and a countable set of propositional symbols Prop. The
language L of the Epistemic Separation Logic, denoted ESL, is defined as follows:

ϕ ::= p | ⊥ | I | ϕ→ ϕ | ϕ∗ϕ | ϕ−∗ϕ | Kaϕ

where a ranges over A and p over Prop.
We can also define the other connectives : ¬ϕ ≡ ϕ→⊥, > ≡ ¬⊥, ϕ∨ψ ≡ ¬ϕ→ ψ, ϕ∧ψ ≡
¬(ϕ→¬ψ) and K̃aϕ≡ ¬Ka¬ϕ.
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Here we consider possible worlds as resources and then we use indifferently the words possi-
ble world and resource.
The epistemic modality Kaϕ means that the agent a knows that ϕ holds, and the epistemic modal-
ity K̃aϕ, defined by K̃aϕ ≡ ¬Ka¬ϕ, means that the agent a considers that ϕ is possible. Finally
the multiplicative connectives are the multiplicative conjunction ϕ∗ψ, meaning that the possible
world can be decomposed into two possible sub-worlds such that the first one satisfies ϕ and
the second one satisfies ψ, and the multiplicative implication ϕ−∗ψ meaning that by adding any
possible world that satisfies ϕ we obtain a possible world that satisfies ψ. We also notice that I is
the unit of ∗.
A key point is the mixing of the epistemic modalities and the multiplicative connectives. For
example, we can write the formula ϕ−∗Kaψ that expresses that any addition of a resource that
satisfies ϕ allows the agent a to obtain the knowledge of ψ.
Let us give now some details about ESL and its semantics [Courtault et al. 2015] before to study
its extension with public announcements.

Definition 2.1 (Partial resource monoid). A partial resource monoid (PRM) is a structure R =

(R,•,e) such that:
– R is a set of resources or possible worlds with e ∈ R;
– • : R×R ⇀ R such that, for all r1,r2,r3 ∈ R, r1 •e ↓ and r1 •e = r1 (neutral element), if r1 • r2 ↓
then r2 • r1 ↓ and r1 • r2 = r2 • r1 (commutativity) and if r1 • (r2 • r3) ↓ then (r1 • r2) • r3 ↓ and
r1 • (r2 • r3) = (r1 • r2)• r3 (associativity).

where r1 • r2 ↓ means ”r1 • r2 is defined” and r1 • r2 ↑ means ”r1 • r2 is undefined”.
We denote ℘(E) the powerset of the set E, namely the set of sets built from E. We call e the unit
resource and • the resource composition operator.
Let us define now what is a model and also the related validity relaltion.

Definition 2.2 (Model). A model is a triple M = (R ,{∼a}a∈A,V ) such that:
– R = (R,•,e) is a PRM;
– For all a ∈ A,∼a⊆ R×R is an equivalence relation that is, for all r1,r2,r3 ∈ R, r1 ∼a r1 (reflex-
ivity), if r1 ∼a r2 then r2 ∼a r1 (symmetry), if r1 ∼a r2 and r2 ∼a r3 then r1 ∼a r3 (transitivity);.
– V : Prop→℘(R) is a valuation.

If we compare these specific models to the models of Epistemic Logic, we observe that the
possible worlds are considered as resources, and they can be composed or decomposed by the
function •. Compared to the BBI models, the partial resource monoids are extended by equiva-
lence relations on resources parametrized by agents.

Definition 2.3 (ESL Forcing relation, validity). Let M = (R ,{∼a}a∈A,V ) be a model. The
forcing relation �M ⊆ R×L is defined by structural induction, for all r ∈ R, as follows:
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r �M p iff r ∈V (p)
r �M > always
r �M ⊥ never
r �M I iff r = e
r �M ¬ϕ iff r 6�M ϕ

r �M ϕ∧ψ iff r �M ϕ and r �M ψ

r �M ϕ∨ψ iff r �M ϕ or r �M ψ

r �M ϕ→ ψ iff r �M ϕ implies r �M ψ

r �M ϕ∗ψ iff ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M ϕ and r2 �M ψ

r �M ϕ−∗ψ iff ∀r′ ∈ R · (r • r′ ↓ and r′ �M ϕ)⇒ r • r′ �M ψ

r �M Kaϕ iff ∀r′ ∈ R · r ∼a r′⇒ r′ �M ϕ

r �M K̃aϕ iff ∃r′ ∈ R · r ∼a r′ and r′ �M ϕ

We say that a formula ϕ is valid, denoted � ϕ, if and only if r �M ϕ for all resources r of all
models M .

More details about ESL can be found in [Courtault et al. 2015]. In this paper we study the
interest and impact of the addition of public announcements to ESL for modelling and also for
proving, in the perpsective of system verification.

2.2. An Epistemic Separation Logic with Public Announcements

We aim at extending the language of ESL with the connectives [ϕ]ψ and 〈ϕ〉ψ≡¬[ϕ]¬ψ that are
dynamic epistemic modalities of Public Announcement Logic (PAL) [Plaza 1989,van Ditmarsch
et al. 2007], [ϕ]ψ meaning that “after the truthful public announcement ϕ, ψ is true”, and 〈ϕ〉ψ
meaning that “ϕ can be truthfully announced and ψ is true after it”.
The peculiarity of PAL, and of other dynamic epistemic logics, is that this modality is standardly
interpreted by a model transformation and not by an internal step in a given model, correspond-
ing to an arrow in a given accessibility relation.
The formula [ϕ]ψ is true in a state of a given model, if and only if on condition that ϕ is true
in that state, in the model restriction to the states where ϕ is true, the postcondition ψ is true
in that state. In PAL terminology, where R is a set of words, r |=M [ϕ]ψ iff if r |=M ϕ then
r |=M |ϕ ψ where M |ϕ = (R′,{∼′a}a∈A,V ′) such that R′ = {r ∈ R | r |=M ϕ}, for each a ∈ A,
∼′a =∼a ∩(R′×R′), and for each p ∈ P, V ′(p) =V (p)∩R′.

This standard semantics for public announcement logic is unsuitable in our setting, because it
does not preserve monoids. For example, given a unit e ∈ R, a public announcement ¬I will re-
strict the resource set R of the monoid R to R\{e} that is no longer a monoid. Such restrictions
on R cannot preserve the associativity of •.
Two alternative semantics for public announcement logic are as follows. In the first approach
[Gerbrandy 1999] we do not restrict the domain to worlds where the announcement formula ϕ

is true, but we restrict the accessibility relation (for all agents) to those pairs ending in worlds
where ϕ is true. In a second approach [van Benthem and Liu 2007] we do not restrict the domain
but only refine the accessibility relation, i.e., we separate the submodel consisting of the ϕ worlds
from the submodel consisting of the ¬ϕ worlds.
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All semantics are equivalent in the sense that in a world satisfying the announcement, the same
formulae in the logic are true (they are bisimilar), but the two alternatives have the advantage
that the entire domain of the original model is preserved and therefore they preserve monoids.
The refinement approach seems most suitable in our setting, as we focus on the incorporation
of reliable information, i.e., truthful announcements. We therefore now employ this semantics in
our separation logic with announcements.
After this semantic analysis we can define a new epistemic separation logic, called Public An-
nouncement Separation Logic (PASL), by extending the definitions given for ESL in order to
deal with the connectives [ϕ]ψ and 〈ϕ〉ψ≡ ¬[ϕ]¬ψ.

We assume a finite set of agents A, and a countable set of propositional symbols Prop. The
language L of PASL is defined as follows:

ϕ ::= p | ⊥ | I | ϕ→ ϕ | ϕ∗ϕ | ϕ−∗ϕ | Kaϕ | [ϕ]ϕ | 〈ϕ〉ϕ.

where a ranges over A and p over Prop.
From the definition of partial resource monoid and of model we can define the forcing relation
for PASL and the related notion of validity.

Definition 2.4 (PASL Forcing relation). Let M = (R ,{∼a}a∈A,V ) be a model. The forcing
relation �M ⊆ R×L of Def. 2.4 is expanded with the following dual inductive clauses for public
announcement:

r �M [ϕ]ψ iff r �M ϕ implies r �M |ϕ ψ

r �M 〈ϕ〉ψ iff r �M ϕ and r �M |ϕ ψ

where M |ϕ = (R ′,{∼′a}a∈A,V ′), called the refinement of M with ϕ, is defined by: R ′ = R ,
∼′a = ∼a ∩{(r,s) | r �M ϕ iff s �M ϕ} and V ′ =V .

The reader may note the difference with the more standard public announcement semantics given
above. Moreover we observe that in the forcing relation there is no interaction between the epis-
temic aspects and resource aspects: the clauses for ∗ and −∗ do not refer to the equivalence
relation that encodes the epistemic modality, and the clauses for knowledge Ka and its dual do
not refer to resource composition or decomposition that encode the resource modalities.
In this context we aim at showing that ESL is equally expressive as PASL. For that we first prove
the following proposition and two related lemmas.

Proposition 2.5. The following are validities of PASL, namely epistemic separation logic with
public announcements.

〈ϕ〉p ↔ (ϕ∧ p) 〈ϕ〉(ψ∗χ) ↔ (ϕ∧ (
〈ϕ〉I ↔ (ϕ∧ I) (〈ϕ〉ψ∗ 〈ϕ〉χ) ∨
〈ϕ〉(ψ∨χ) ↔ (〈ϕ〉ψ∨〈ϕ〉χ) (〈ϕ〉ψ∗ 〈¬ϕ〉χ) ∨
〈ϕ〉¬ψ ↔ (ϕ∧¬〈ϕ〉ψ) (〈¬ϕ〉ψ∗ 〈ϕ〉χ) ∨
〈ϕ〉K̃aψ ↔ (ϕ∧ K̃a〈ϕ〉ψ) (〈¬ϕ〉ψ∗ 〈¬ϕ〉χ) ))
〈ϕ〉〈ψ〉χ ↔ 〈〈ϕ〉ψ〉χ 〈ϕ〉(ψ−∗χ) ↔ (ϕ ∧

〈ϕ〉ψ−∗ (〈ϕ〉χ∨〈¬ϕ〉χ) ∧
〈¬ϕ〉ψ−∗ (〈ϕ〉χ∨〈¬ϕ〉χ) )
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Proof. For all but the last two schemata, this is straightforward and proceeds as in public
announcement logic. We recall that there is no interaction between the epistemic modalities Ka

and the separation logic primitives of decomposition ∗ and composition −∗. (The identity can
be treated as just another propositional variable; I is merely a designated variable with a unique
interpretation.) For the last two schemata involving the interaction between public announcement
and the multiplicative connectives ∗ and −∗, we refer to Lemma 2.6 and 2.7 below.

Lemma 2.6. A validity of the logic is

〈ϕ〉(ψ∗χ) ↔ (ϕ ∧ ((〈ϕ〉ψ∗〈ϕ〉χ) ∨ (〈ϕ〉ψ∗〈¬ϕ〉χ) ∨ (〈¬ϕ〉ψ∗〈ϕ〉χ) ∨ (〈¬ϕ〉ψ∗〈¬ϕ〉χ)))

Proof. Let M = (R ,{∼a}a∈A,V ) and r ∈ R be given.

r �M 〈ϕ〉(ψ∗χ) iff
r �M ϕ and r �M |ϕ ψ∗χ iff
r �M ϕ and ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M |ϕ ψ and r2 �M |ϕ χ iff
r �M ϕ and ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and (r1 �M ϕ or r1 �M ¬ϕ) and r1 �M |ϕ ψ and
(r2 �M ϕ or r2 �M ¬ϕ) and r2 �M |ϕ χ

We now observe that M |ϕ = M |¬ϕ (the refinement with the denotation of ϕ ‘refines’ the do-
main into a ϕ and a ¬ϕ part; we remind the reader that our public announcement is not a model
restriction) and that
(r1 �M ϕ or r1 �M ¬ϕ) and r1 �M |ϕ ψ iff
(r1 �M ϕ and r1 �M |ϕ ψ) or (r1 �M ¬ϕ and r1 �M |ϕ ψ) iff
r1 �M 〈ϕ〉ψ or r1 �M 〈¬ϕ〉ψ

and similarly (r2 �M ϕ or r2 �M ¬ϕ) and r2 �M |ϕ χ is equivalent to r2 �M 〈ϕ〉χ or r2 �M 〈¬ϕ〉χ.
The above expression is therefore equivalent to
r �M ϕ and ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and (r1 �M 〈ϕ〉ψ or r1 �M 〈¬ϕ〉ψ) and
(r2 �M 〈ϕ〉χ or r2 �M 〈¬ϕ〉χ)

By boolean manipulations we get from this the equivalent
r �M ϕ and ∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and (r1 �M 〈ϕ〉ψ and r2 �M 〈ϕ〉χ) or
(r1 �M 〈ϕ〉ψ and r2 �M 〈¬ϕ〉χ) or (r1 �M 〈¬ϕ〉ψ and r2 �M 〈ϕ〉χ) or
(r1 �M 〈¬ϕ〉ψ and r2 �M 〈¬ϕ〉χ)
and by further boolean manipulations and the distribution of the existential quantifier over the
disjunction we get
r �M ϕ and
∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M 〈ϕ〉ψ and r2 �M 〈ϕ〉χ or
∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M 〈ϕ〉ψ and r2 �M 〈¬ϕ〉χ or
∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M 〈¬ϕ〉ψ and r2 �M 〈ϕ〉χ or
∃r1,r2 ∈ R · r1 • r2 ↓ and r = r1 • r2 and r1 �M 〈¬ϕ〉ψ and r2 �M 〈¬ϕ〉χ

By the semantics of ∗ this is equivalent to
r �M ϕ and r �M 〈ϕ〉ψ∗ 〈ϕ〉χ or r �M 〈ϕ〉ψ∗ 〈¬ϕ〉χ or r �M 〈¬ϕ〉ψ∗ 〈ϕ〉χ or
r �M 〈¬ϕ〉ψ∗ 〈¬ϕ〉χ



8

and this finally delivers us the desired
r �M ϕ∧ ((〈ϕ〉ψ∗ 〈ϕ〉χ) ∨ (〈ϕ〉ψ∗ 〈¬ϕ〉χ) ∨ (〈¬ϕ〉ψ∗ 〈ϕ〉χ) ∨ (〈¬ϕ〉ψ∗ 〈¬ϕ〉χ) ).
As all these steps were equivalences, and as M and r were arbitrary, we are done.

Lemma 2.7. A validity of the logic is

〈ϕ〉(ψ−∗χ) ↔ (ϕ ∧ 〈ϕ〉ψ−∗ (〈ϕ〉χ ∨ 〈¬ϕ〉χ) ∧ 〈¬ϕ〉ψ−∗ (〈ϕ〉χ∨ 〈¬ϕ〉χ))

Proof. Let M = (R ,{∼a}a∈A,V ) and r ∈ R be given.

r �M 〈ϕ〉(ψ−∗χ) iff
r �M ϕ and r �M |ϕ ψ−∗χ iff
r �M ϕ and ∀r′ ∈ R · (r • r′ ↓ and r′ �M |ϕ ψ)⇒ r • r′ �M |ϕ χ iff
r �M ϕ and ∀r′ ∈ R · r • r′ ↓ ⇒ (r′ �M |ϕ ψ⇒ r • r′ �M |ϕ χ) iff
r �M ϕ and ∀r′ ∈ R · r • r′ ↓ ⇒ ( (r′ �M ϕ or r′ �M ¬ϕ) and r′ �M |ϕ ψ⇒ ((r • r′ �M ϕ or
r • r′ �M ¬ϕ) and r • r′ �M |ϕ χ) ) iff
r �M ϕ and ∀r′ ∈ R · r • r′ ↓ ⇒ ( ((r′ �M ϕ and r′ �M |ϕ ψ) or (r′ �M ¬ϕ and r′ �M |ϕ ψ))⇒
((r • r′ �M ϕ and r • r′ �M |ϕ χ) or (r • r′ �M ¬ϕ and r • r′ �M |ϕ χ)) ) iff
r �M ϕ and ∀r′ ∈ R · r • r′ ↓ ⇒
(r′ �M 〈ϕ〉ψ or r′ �M 〈¬ϕ〉ψ)⇒ (r • r′ �M 〈ϕ〉χ or r • r′ �M 〈¬ϕ〉χ) iff
r �M ϕ and ∀r′ ∈ R · r • r′ ↓ ⇒ (r′ �M 〈ϕ〉ψ⇒ (r • r′ �M 〈ϕ〉χ or r • r′ �M 〈¬ϕ〉χ) and
(r′ �M 〈¬ϕ〉ψ)⇒ (r • r′ �M 〈ϕ〉χ or r • r′ �M 〈¬ϕ〉χ) (∗) iff
r �M ϕ and
∀r′ ∈ R · r • r′ ↓ ⇒ (r′ �M 〈ϕ〉ψ⇒ (r • r′ �M 〈ϕ〉χ or r • r′ �M 〈¬ϕ〉χ)) and
∀r′ ∈ R · r • r′ ↓ ⇒ (r′ �M 〈¬ϕ〉ψ⇒ (r • r′ �M 〈ϕ〉χ or r • r′ �M 〈¬ϕ〉χ)) iff
r �M ϕ and
∀r′ ∈ R · r • r′ ↓ ⇒ (r′ �M 〈ϕ〉ψ⇒ r • r′ �M 〈ϕ〉χ∨〈¬ϕ〉χ) and
∀r′ ∈ R · r • r′ ↓ ⇒ (r′ �M 〈¬ϕ〉ψ⇒ r • r′ �M 〈ϕ〉χ∨〈¬ϕ〉χ) iff
r �M ϕ and r �M 〈ϕ〉ψ−∗ (〈ϕ〉χ∨〈¬ϕ〉χ) and r �M 〈¬ϕ〉ψ−∗ (〈ϕ〉χ∨〈¬ϕ〉χ) iff
r �M ϕ∧ (〈ϕ〉ψ−∗ (〈ϕ〉χ∨〈¬ϕ〉χ))∧ (〈¬ϕ〉ψ−∗ (〈ϕ〉χ∨〈¬ϕ〉χ))

(*): by distribution of universal quantifier over conjunction.

Proposition 2.8. Epistemic separation logic (ESL) is equally expressive as epistemic separation
logic with public announcements (PASL)

Proof. The proof is along the standard lines for the elimination of dynamic modalities in dy-
namic epistemic logics without common knowledge [Plaza 1989,van Ditmarsch et al. 2007].
Given a formula in the logic with public announcements, we can iteratively push all announce-
ments further into the formula by one of the equivalences above (that is, by a rewriting tech-
nique), until we finally reach a(n) (equivalent) formula wherein the announcement is in front of
a variable, so that it can be eliminated. Therefore, every formula with public announcements is
logically equivalent to one without public announcements.

As ESL does not contain dynamic modalities, obviously the update expressivity of PASL is
larger than that of ESL. On the other hand, the logics are equally expressive but the advantage
of PASL is then the availability of more succinct descriptions of systems behaviour. Any PASL
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specification that after some announcements a certain property holds is equivalent to some ESL
formula, i.e., without announcements, but at the risk of the latter being exponentially longer than
the former. We have not investigated this for PASL, but it is known that the addition of dynamics
to similar logics tends to make them more succinct [Lutz 2006,French et al 2013].

3. Modelling with Public Announcement Separation Logic

First we develop an example that emphasizes some key points about modelling with PASL. We
consider two agents that enter in a library to borrow books. We suppose that they are not allowed
to take out more than two books (only zero, one or two books) and they must tell the book ref-
erences to the librarian who will fetch their books. We also suppose that the books asked by the
agents are always available and that each agent does not know which books and how many books
are asked by the other. The librarian says to the agents: “Before telling me the book references I
would like to say that I cannot carry more than two books. Could you tell me, at first, if I will be
able to carry all the books that you want or if I need to use a book trolley ?”.

As a first step, we build a model of this situation with PASL. We define the set of agents A =

{A1,A2}, where Ai is the ith agent and a PRM that deals with the possible worlds R = (R,•,e).
Then we define the set of resources R = {(i, j) | i, j ∈ {0,1,2}}, where (i, j) encodes “the agent
A1 wants i books and the agent A2 wants j books”, and we recall that an agent cannot borrow
more than two books. Thereby, for instance, (2,0) represents A1 that wants two books and A2

that wants zero book.
The resource composition • is defined by:

(i1, j1)• (i2, j2) =
{
↑ if i1 + i2 > 2 or j1 + j2 > 2
(i1 + i2, j1 + j2) otherwise

We recall that ↑ means “is not defined” and we note that (0,0) is the unit of resource compo-
sition and then e = (0,0).

Let us now illustrate the resource composition. We assume that A1 wants to borrow one book and
the other agent A2 wants no book, then we represent the global borrow request by the resource,
or possible world, (1,0). Now, if A2 wants two more books, then we have the final borrow re-
quest (1,0)•(0,2) = (1,2). Moreover, if A2 wants one more book then it is not allowed: we have
(1,2)• (0,1) ↑, that expresses that A2 cannot borrow more than two books.
Now, we have to build a model M = (R ,{∼a}a∈A,V ) and then we define two equivalence re-
lations, that are ∼A1 and ∼A2 . For instance, we expect (1,0) ∼A2 (2, 0) because if A2 wants no
book then, as A2 has no information about how many books are wanted by A1 and as he has only
information about how many books he wants, then he must consider, from his point of view, that
A1 might want one book or A1 might want two books. On the other hand, we also expect to have,
for instance, (1,0) 6∼A2 (1,1), because it is not consistent, from the point of view of A2, that he
wants no book and one book.
Therefore, we give the following definitions, for all i1, i2, j1, j2 ∈ {0,1,2}:

(i1, j1)∼A1 (i2, j2) iff i1 = i2
(i1, j1)∼A2 (i2, j2) iff j1 = j2
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(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Fig. 1. On the left, the initial model of knowledge. Dashed links - - - represent the relation ∼A2 ,
solid links — represent the relation ∼A1 . We assume reflexivity and transitivity. Grey means “cannot
be carried”. In the middle, the update of the model after the first announcement KA1¬I. On the right,
the model M |ϒ1|ϒ2|ϒ3|ϒ4 after all four announcements.

Finally, we consider the set of propositional symbols Prop= {P1,P2,C} and the valuation V , such
that V (P1) = {(1,0)}, V (P2) = {(0,1)} and V (C) = {(i, j) | i+ j 6 2}. Thus we have r ∈V (Pi)

if and only if r is the borrow such that the agent Ai wants one and only one book and the other
agent wants zero book and r ∈V (C) means that the librarian can carry the books of r (the agents
want at maximum two books).

A graphical representation of our model is given in Fig. 1, where grey vertices correspond to
requests which do not satisfy C.
After the construction of the model of Fig. 1, let us illustrate the use of PASL connectives
in our model. Concerning propositional symbols, we have for instance (0,1) �M P2, because
(0,1) ∈ V (P2), which expresses that only one book is wanted and this book is wanted by A2.
But, we have (0,2) 6�M P2 and (1,1) 6�M P2. Concerning the propositional symbol C, we have
for instance (1,1) �M C which expresses that the librarian can carry the two books asked by the
agents, but (1,2) 6�M C that means that the librarian cannot carry the books (because the agents
want more than two books).
PASL can express properties on agent knowledge. For instance, we have (0,1)�M KA1C, because
for all r ∈ R such that (0,1) ∼A1 r, we have r �M C. It means that if we consider that A1 wants
no book and A2 wants one book, then the agent A1 knows that the librarian can carry the books.
Concerning the modality K̃a we have (1,2) �M K̃A1C, because (1,2)∼A1 (1,1) and (1,1) �M C.
It means that if A1 wants one book and A2 wants two books then A1 considers that it is possible
that the librarian can carry the books.
PASL can also express sharing and separation properties. Concerning the formula I, we have
r �M I iff r = e = (0,0). In other words the formula I expresses that the agents want no book.
About sharing and separation expressed in ESL, as (0,0) �M KA1C and (0,0) �M KA2C then
we have (0,0) �M KA1C∧KA2C. The conjunction ∧ expresses sharing such that KA1C and KA2C
share the resource (0,0). The other conjunction ∗ expresses separation. As (2,0) = (1,0)• (1,0)
and (1,0) �M P1 and (1,0) �M P1 then (2,0) �M P1 ∗P1. This is a separation property because
(2,0) is separated (or decomposed) into two sub-resources. We remark that P1 ∗P1 means that
A1 wants two books (and the other agent A1 wants zero book) and the connective ∗ allows us to
count resources. For instance, P1 ∗P2 ∗P2 means that A1 wants one book and A2 wants two books.
The multiplicative implication −∗ allows us to express a property on the resource obtained after
the addition of another resource. For instance (1,1) �M P1−∗¬C, because if we add a resource
that satisfies P1 to the resource (1,1) then we obtain a resource that satisfies ¬C. Indeed we only
have (1,0) �M P1 and then (1,1)• (1,0) = (2,1) and (2,1) �M ¬C.
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Then we have (1,1) �M P1−∗¬C, that means that if A1 and A2 want one book then if A1 wants
one more book then the librarian cannot carry the books.

After the librarian asks to the agents if he will be able to carry the wanted books, we suppose
that the agents have the following discussion:
1. A1: “I know that we do not want zero book.”
2. A2: “I know that I want at least one book, and A1 also wants at least one book.”
3. A1: “I know that I am allowed to borrow one more book.”
4. A2: “I know that you can carry our books. Moreover, I also know that each of us wants one
book.”

The previous sentences numbered by i are public announcements, which will be denoted ϒi.
We now show the evolution of the model of Fig. 1 after each announcement.
For the sake of readability, we only depict the connected submodel in our interest and not the
disconnected remaining parts of the model (we recall the reader that our public announcement
semantics refines the model and does not restrict the model).

Firstly, A1 says (announces) that he knows that the agents do not want no book, which is ex-
pressed by the formula ϒ1 = KA1¬I. We observe that we have, (i, j) �M KA1¬I if and only if
(i, j) 6∼A1 (0,0). Then the update of our model by the public announcement KA1¬I is the model
M |KA1¬I which is given in Fig. 1.
Starting from the model M |KA1¬I which is given in Fig. 1 and assuming that the agents never
lie, the worlds (0, j), where j ∈ {0,1,2}, cannot be the solution of our problem because these
words do not force the public announcement. We call “solution of our problem” any world that
allows the agents to do the announcements without lying. Thus, the solution is one of the possible
worlds of Fig. 2. We will continue to focus on the connected submodel only.
Then, A2 announces that he knows that A1 wants at least one book, and also himself wants at
least one book. Such property is expressed by the formula ϒ2 = KA2((P1 ∗>)∧ (P2 ∗>)). We
have (i, j) �M |ϒ1

KA2((P1 ∗ >)∧ (P2 ∗ >)) iff i ≥ 1 and j ≥ 1. Then, focusing on the possi-
ble worlds satisfying the formula, the solution is one of the resources of Fig. 3. A1 announces
that he knows that he is allowed to borrow one more book, which is captured by the formula
ϒ3 = KA1¬(P1−∗⊥). Indeed, we have (i, j) �M |ϒ1|ϒ2

P1−∗⊥ if and only if for all r ∈ R such
that (i, j)• r ↓ and r �M |ϒ1|ϒ2

P1, we have (i, j)• r �M |ϒ1|ϒ2
⊥. As r can only be (1,0) (because

r �M |ϒ1|ϒ2
P1) and no resource satisfies ⊥, we necessarily have (i, j) • (1,0) ↑, that means that

A1 cannot borrow one more book. Then the negation (¬) of the formula (P1−∗⊥) means A1

can borrow one more book. Finally, ignoring all possible worlds that do not satisfy the formula
KA1¬(P1−∗⊥), we obtain the worlds of Fig. 4.
Finally, A2 says that he knows that the librarian can carry the books. The only possible world
which satisfies the formula KA2C is (1,1), which is the solution of our problem: A1 wants one
book and A2 wants also one book. Moreover, A2 knows it, that is expressed by KA2(C∧(P1 ∗P2)).
Considering this last sentence as a public announcement (ϒ4 = KA2(C∧ (P1 ∗P2))), and ignoring
the worlds that do not satisfy it, we obtain the world of Fig. 5. We also can write (1,1) �M
〈ϒ1〉〈ϒ2〉〈ϒ3〉KA2(C∧ (P1 ∗P2)), that expresses that after all announcements, A2 knows that the
librarian can carry the books and also knows the quantity of books wanted being each agent.
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(1,0) (2,0)

(1,1) (2,1)

(1,2) (2,2)

Fig. 2.

(1,1) (2,1)

(1,2) (2,2)

Fig. 3.

(1,1)

(1,2)

Fig. 4.

(1,1)

Fig. 5.

We remark that (1,1) is the only world satisfying the formula and the public announcements are
expressed using 〈ϒi〉 rather than [ϒi] because they are all true. We assume that the agents are in a
true and fair view.

In order to complete this study about expressivity, let us now reason once more about the entire
model and not about the situation (1,1). For that we show how we can combine epistemic and
separating connectives and then to provide new modalities that allow us to express particular
properties.
– Ka(ϕ ∗ψ), that means that the agent a knows that the resource (the possible world) can be
decomposed into two sub-resources that respectively satisfy ϕ and ψ. Back to the example,
KA1(P1 ∗P1 ∗P2) expresses that A1 knows that he wants two books and A2 wants one book.
– Ka(ϕ−∗ψ), that means that the agent a knows that by the addition of a resource satisfying ϕ

one obtains a resource satisfying ψ. Back to the example, KA1((P1∨P2)−∗¬C) expresses that A1

knows that if an agent orders one more book then the librarian cannot carry the books.
– ϕ∗Kaψ, that means that without a resource satisfying ϕ, the agent a could have the knowledge
that ψ holds. Back to the example, P2 ∗KA2C expresses that wanting one book less, the agent A2

gets the knowledge that the librarian can carry the books.
– ϕ−∗Kaψ, that means that the addition of a resource satisfying ϕ allows the agent a to obtain
the knowledge that ψ holds. Back to the example, P1−∗KA1¬C expresses that choosing to borrow
one more book gives to A1 the knowledge that the librarian cannot carry the books.

We remark that the two last expressions allow us to express a property that involves a kind of
change of mind, namely “if the agent wants one book less” and “if the agent chooses to borrow
one more book”. The use of such formulae that can be seen as new epistemic modalities will be
studied in next works.

4. A Tableaux Calculus for PASL

In this section, we present a tableaux calculus for PASL, designed in the spirit of the tableaux
calculus for BI and BBI [Galmiche et al. 2005,Larchey-Wendling 2016], with the extraction
of a countermodel in case of non-validity of a formula. Compared to other calculi like ESL
[Courtault et al. 2015], we have to deal with public announcements and then we introduce new
specific constraints and new rules. An original point is that constraints are decorated with stacks
of formulas, knowing that for PAL they only decorate formulas.
Our treatment of announcements has some similarities with what is done in tableaux calculi for
PAL [Balbiani et al. 2010]: book-keeping for finite lists of announcements plays an important
role, and despite the refinement semantics for announcements in our paper we can maintain the
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splitting rules for announcements (as, after all, also in our alternative semantics the truth of the
announcement formula is a condition for execution).

4.1. Labels and constraints

We first introduce labels and constraints that respectively correspond to resources and the equality
and the equivalence relations on resources and agents, including annoucements.
Let us consider an infinite countable set of (resource) constants γr = {c1,c2, . . .}. We denote
⊕ the concatenation of lists and JK the empty list. For example, we have Je1;e2K⊕ Je2;e3K =
Je1;e2;e2;e3K. We also denote LE the set of all lists built over E.

Definition 4.1 (Resource labels). A resource label is a word built on γr where the order of letters
is not taken into account, i.e. a finite multiset of γr elements.

We denote Lr the set of all resource labels built on γr. The composition of resource labels is
denoted multiplicatively and ε is the empty word. For instance, xy is the composition of the
resource labels x and y. We say that x is a resource sub-label of y if and only if there exists z such
that xz = y. The set of resource sub-labels of x is denoted E(x).

Definition 4.2 (Constraints). A resource constraint is an expression of the form x' y where x
and y are resource labels.
An agent constraint is an expression of the form x Pµ

u y, where x and y are resource labels, u
belongs to the set of agents A and µ is a finite list of formulae of L .
An announcement constraint is an expression of the form .µ, where µ is a finite list of formulae
of L .

We call set of constraints any set C that contains resource constraints, agent constraints and
announcement constraints. For instance, C = {c1 ' c2,c2 ' c3,c4 P

JP;P∧QK
b c1} is a set of con-

straints.

Definition 4.3 (Domain). Let C be a set of constraints. The (resource) domain of C is the set of
all resource sub-labels that appear in C , that is:

Dr(C ) =
⋃

x'y∈C
(E(x)∪E(y)) ∪

⋃
xPµ

uy∈C

(E(x)∪E(y))

The announcement domain of C is the set of all list of formulae that appear in C :

Da(C ) =
⋃

xPµ
uy∈C

{µ} ∪
⋃
.µ∈C
{µ}

Definition 4.4 (Alphabet). Let C be a set of constraints. The (resource) alphabet of C is the set
of resource constants that appear in C . In particular, Ar(C ) = γr ∩Dr(C ).

Now we introduce rules for constraint closure that allow us to capture the properties of the models
into the calculus.

Definition 4.5 (Closure of constraints). Let C be a set of constraints. The closure of C , denoted
C , is the least relation closed under the rules of Fig. 6 such that C ⊆ C .
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Rules for resource constraints
〈ε〉

ε' ε
x' y

〈sr〉y' x
xy' xy

〈dr〉x' x
x' y y' z

〈tr〉x' z
x' y yk ' yk

〈cr〉
xk ' yk

xPµ
u y

〈kr〉x' x
Rules for agent constraints

x' x 〈ra〉
xPJK

v x
xPJK

u y
〈sa〉

yPJK
u x

xPJK
u y yPJK

u z
〈ta〉

xPJK
u z

xPJK
u y x' k

〈ka〉
k PJK

u y

xPJψ1;...;ψkK
u y

〈pa〉
xPJψ1;...;ψk−1K

u y
Rule for announcement constraints

xPµ
u y

〈an〉.µ

Fig. 6. Rules for constraint closure, for all v ∈ A

There are six rules (〈ε〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈cr〉 and 〈kr〉) that produce resource constraints, five
rules (〈ra〉, 〈sa〉, 〈ta〉, 〈ka〉 and 〈pa〉) that produce agent constraints and one rule that (〈an〉) pro-
duces announcement constraints.
We note that v, introduced in the rule 〈ra〉, must belong to the set of agents A. For instance, if
C = {c1 ' c2,c2 ' c3,c1 P

JP∗Q;P∨RK
b c4}, we have c3 P

JK
b c4 ∈ C because of the following proof:

c1 P
JP∗Q;P∨RK
b c4

c1 ' c2 c2 ' c3 〈tr〉c1 ' c3
〈ka〉

c3 P
JP∗Q;P∨RK
b c4

〈pa〉
c3 P

JP∗QK
b c4

〈pa〉
c3 P

JK
b c4

Let us remark that .µ iff µ∈Da(C ). In fact, if one wants to introduce in the calculus the annouce-
ment list µ then it is not possible to add xPµ

u x in the set of constraints, because when A = /0 it is
not possible to find such a u.

Proposition 4.6. The following rules can be derived from the rules of constraint closure:

xk ' y
〈pl〉x' x

x' yk
〈pr〉y' y

xk PJK
u y

〈ql〉x' x
xPJK

u yk
〈qr〉y' y

xPJK
u y x' x′ y' y′

〈wa〉
x′ PJK

u y′

Proof. We provide the following deduction trees

xk ' y
xk ' y

〈sr〉
y' xk

〈tr〉
xk ' xk 〈dr〉x' x

x' yk
〈sr〉

yk ' x
〈pl〉y' y

xk PJK
u y

〈kr〉
xk ' xk 〈dr〉x' x

xPJK
u yk

〈sa〉
yk PJK

u x
〈ql〉y' y
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xPJK
u y x' x′

〈ka〉
x′ PJK

u y
〈sa〉

yPJK
u x′ y' y′

〈ka〉
y′ PJK

u x′
〈sa〉

x′ PJK
u y′

Corollary 4.7. Let C be a set of constraints and u ∈ A be an agent. We have x ∈ Dr(C ) if and
only if x' x ∈ C if and only if xPJK

u x ∈ C .

Proof. We suppose that x ∈ Dr(C ). By Definition 4.3, we have x ∈
⋃

y'z∈C (E(y)∪E(z)) or
x ∈

⋃
yPµ

uz∈C (E(y)∪E(z)). There are two cases.
- There exists y' z ∈ C such that x ∈E(y)∪E(z). Then, there exists a resource label k such that
xk ' z ∈ C or y' xk ∈ C . Thus, by Proposition 4.6, x' x ∈ C .
- There exists yPµ

u z∈ C such that x∈E(y)∪E(z). Then, there exists a resource label k such that
xkPµ

u z ∈ C or yPµ
u xk ∈ C . By the rule 〈pa〉, xkPJK

u z ∈ C or yPJK
u xk ∈ C . Thus, by Proposition

4.6, x' x ∈ C .

We suppose that x ' x ∈ C . Then, by definition, x ∈Dr(C ). Therefore we have x ∈Dr(C ) iff
x' x ∈ C . Now, we have x' x ∈ C if and only if xPJK

u x ∈ C by the rules 〈kr〉 and 〈ra〉.

Corollary 4.8. Let C be a set of constraints. If xy ∈ Dr(C ), x′ ' x ∈ C and y′ ' y ∈ C then
xy' x′y′ ∈ C .

Proof. By Corollary 4.7, xy' xy ∈ C . We give the following deduction tree

...
y′ ' y

...
x′ ' x

...
xy' xy

〈cr〉
x′y' xy

〈pl〉
x′y' x′y

〈cr〉
x′y′ ' x′y

...
x′ ' x

...
xy' xy

〈cr〉
x′y' xy

〈tr〉
x′y′ ' xy

〈sr〉
xy' x′y′

Proposition 4.9. Let C be a set of constraints and u ∈ A be an agent. We have µ ∈Da(C ) if and
only if .µ ∈ C .

Proof. By definition and by the rule 〈an〉.

Proposition 4.10. Let C be a set of constraints. We have Ar(C ) = Ar(C ).

Proof. As C ⊆ C , then we have Ar(C ) ⊆ Ar(C ). For the converse, it suffices to observe that
the rules of Fig. 6 do not introduce new resource constants. Thus Ar(C ) ⊆ Ar(C ). Therefore
Ar(C ) = Ar(C ).



16

Lemma 4.11 (Compactness). Let C be a (possibly infinite) set of constraints:

1 If x' y ∈ C then there is a finite set C f such that C f ⊆ C and x' y ∈ C f

2 If xPµ
u y ∈ C then there is a finite set C f such that C f ⊆ C and xPµ

u y ∈ C f

3 If .µ ∈ C then there is a finite set C f such that C f ⊆ C and .µ ∈ C f

Proof. Let C be a set of constraints. Let c ∈ C be a constraint. If c ∈ C because c ∈ C then by
considering C f = {c}, we have C f ⊆ C and c∈ C f . In the other cases, the constraint c is obtained
by rules of Fig. 6. The proof is by induction on the size n of the deduction tree of c. The detailed
proof is given in Appendix A.

4.2. A tableaux calculus for PASL

Now, we can define a labelled tableaux calculus for ESL in the spirit of previous works for
BI [Galmiche et al. 2005] and BBI [Larchey-Wendling 2016]. Our calculus is based on some
ideas and techniques coming from tableaux for Public Announcement Logic [Balbiani et al.
2010], that consists in taking into account the lists of announcements.

Definition 4.12. A labelled formula is a 4-tuple of the form (Sϕ : µ,x), such that S ∈ {T,F}, µ
is a (possibly empty) list of PASL formulae, ϕ ∈ L is a formula and x ∈ Lr is a resource label. A
constrained set of statements (CSS) is a pair 〈F ,C 〉, where F is a set of labelled formulae and
C is a set of constraints, satisfying the property:

if (Sϕ : µ,x) ∈ F then x' x ∈ C and µ ∈Da(C ) (Pcss)

A CSS 〈F ,C 〉 is finite if F and C are finite.
The relation 4 is defined by 〈F ,C 〉 4 〈F ′,C ′〉 iff F ⊆ F ′ and C ⊆ C ′. We denote 〈F f ,C f 〉 4 f

〈F ,C 〉 when 〈F f ,C f 〉 4 〈F ,C 〉 holds and 〈F f ,C f 〉 is finite, meaning that F f and C f are both
finite.

Proposition 4.13. For any CSS 〈F f ,C 〉 where F f is finite, there exists C f ⊆ C such that C f is
finite and 〈F f ,C f 〉 is a CSS.

Proof. By induction on the number of labelled formulae that belongs to F f and using Propo-
sition 4.9 and Lemma 4.11.

Definition 4.14 (Tableau). Let 〈F0,C0〉 be a finite CSS. A tableau for 〈F0,C0〉 is a list of CSS,
called branches, inductively built according the following rules:

1 The one branch list [〈F0,C0〉] is a tableau for 〈F0,C0〉
2 If the list Tm⊕ [〈F ,C 〉]⊕Tn is a tableau for 〈F0,C0〉 and

cond〈F ,C 〉
〈F1,C1〉 | . . . | 〈Fk,Ck〉

is an instance of a rule of Fig. 7 for which the condition cond〈F ,C 〉 is fulfilled, then the list
Tm⊕ [〈F ∪F1,C ∪C1〉; . . . ;〈F ∪Fk,C ∪Ck〉]⊕Tn is a tableau for 〈F0,C0〉.

A tableau for the formula ϕ is a tableau for 〈{(Fϕ : JK,c1)},{c1 ' c1}〉.
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(TI : µ,x) ∈ F
〈TI〉

〈 /0,{x' ε}〉

(T¬ϕ : µ,x) ∈ F
〈T¬〉

〈{(Fϕ : µ,x)}, /0〉
(F¬ϕ : µ,x) ∈ F

〈F¬〉
〈{(Tϕ : µ,x)}, /0〉

(Tϕ∧ψ : µ,x) ∈ F
〈T∧〉

〈{(Tϕ : µ,x),(Tψ : µ,x)}, /0〉
(Fϕ∧ψ : µ,x) ∈ F

〈F∧〉
〈{(Fϕ : µ,x)}, /0〉 | 〈{(Fψ : µ,x)}, /0〉

(Tϕ∨ψ : µ,x) ∈ F
〈T∨〉

〈{(Tϕ : µ,x)}, /0〉 | 〈{(Tψ : µ,x)}, /0〉
(Fϕ∨ψ : µ,x) ∈ F

〈F∨〉
〈{(Fϕ : µ,x),(Fψ : µ,x)}, /0〉

(Tϕ→ ψ : µ,x) ∈ F
〈T→〉

〈{(Fϕ : µ,x)}, /0〉 | 〈{(Tψ : µ,x)}, /0〉
(Fϕ→ ψ : µ,x) ∈ F

〈F→〉
〈{(Tϕ : µ,x),(Fψ : µ,x)}, /0〉

(Tϕ∗ψ : µ,x) ∈ F
〈T∗〉

〈{(Tϕ : µ,ci),(Tψ : µ,c j)},{x' cic j}〉
(Fϕ∗ψ : µ,x) ∈ F and x' yz ∈ C

〈F∗〉
〈{(Fϕ : µ,y)}, /0〉 | 〈{(Fψ : µ,z)}, /0〉

(Tϕ−∗ψ : µ,x) ∈ F and xy' xy ∈ C
〈T−∗〉

〈{(Fϕ : µ,y)}, /0〉 | 〈{(Tψ : µ,xy)}, /0〉
(Fϕ−∗ψ : µ,x) ∈ F

〈F−∗〉
〈{(Tϕ : µ,ci),(Fψ : µ,xci)},{xci ' xci}〉

(TKuϕ : µ,x) ∈ F and xPµ
u y ∈ C

〈TK〉
〈{(Tϕ : µ,y)}, /0〉

(FKuϕ : µ,x) ∈ F
〈FK〉

〈{(Fϕ : µ,ci)},{xPµ
u ci}〉

(TK̃uϕ : µ,x) ∈ F
〈TK̃〉

〈{(Tϕ : µ,ci)},{xPµ
u ci}〉

(FK̃uϕ : µ,x) ∈ F and xPµ
u y ∈ C

〈FK̃〉
〈{(Fϕ : µ,y)}, /0〉

(T[ϕ]ψ : µ,x) ∈ F
〈T[·]〉

〈{(Fϕ : µ,x)}, /0〉 | 〈{(Tψ : µ⊕ JϕK,x)},{.µ⊕ JϕK}〉
(F[ϕ]ψ : µ,x) ∈ F

〈F[·]〉
〈{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},{.µ⊕ JϕK}〉

(T〈ϕ〉ψ : µ,x) ∈ F
〈T〈·〉〉

〈{(Tϕ : µ,x),(Tψ : µ⊕ JϕK,x)},{.µ⊕ JϕK}〉
(F〈ϕ〉ψ : µ,x) ∈ F

〈F〈·〉〉
〈{(Fϕ : µ,x)}, /0〉 | 〈{(Fψ : µ⊕ JϕK,x)},{.µ⊕ JϕK}〉

xPJψ1;...;ψkK
u y ∈ C

〈Rpop〉
〈{(Tψk : Jψ1; ...;ψk−1K,x),(Tψk : Jψ1; ...;ψk−1K,y)}, /0〉 | 〈{(Fψk : Jψ1; ...;ψk−1K,x),(Fψk : Jψ1; ...;ψk−1K,y)}, /0〉

xPµ
u y ∈ C and .µ⊕ JϕK ∈ C

〈Rpush〉
〈 /0,{xPµ⊕JϕK

u y}〉 | 〈{(Tϕ : µ,x),(Fϕ : µ,y)}, /0〉 | 〈{(Fϕ : µ,x),(Tϕ : µ,y)}, /0〉

ci and c j are new label constants.

Fig. 7. Rules of tableaux calculus for PASL

We encode tableaux as lists of CSS, denoted Ti, with ⊕ being the concatenation of lists. Then
[e3;e1]⊕ [e1;e2;e5] = [e3;e1;e1;e2;e5]. Fig. 7 presents the rules of tableaux calculus for PASL.
Let us note that ”ci and c j are new label constants” means ci 6= c j ∈ γr \Ar(C ).
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In addition we remark that a tableau for a formula ϕ verifies the property (Pcss) of Definition
4.12 (by the rule 〈ra〉) and any application of a rule of Fig. 7 provides also a tableau that verifies
the property (Pcss). An original key point is that we have a generation of formulas from con-
straints (see rules 〈Rpop〉 and 〈Rpush〉) in addition to the generation of constraints from formulas
like in previous works on BBI variants.

Definition 4.15 (Closure condition). A CSS 〈F ,C 〉 is closed if one of the following conditions
holds, where p ∈ Prop, ϕ ∈ L and µ and κ are lists of PASL formulae:

1 (Tp : µ,x) ∈ F , (Fp : κ,y) ∈ F and x' y ∈ C ,
2 (Tϕ : µ,x) ∈ F , (Fϕ : µ,y) ∈ F and x' y ∈ C ,
3 (FI : µ,x) ∈ F and x' ε ∈ C ,
4 (F> : µ,x) ∈ F and
5 (T⊥ : µ,x) ∈ F .

A CSS is open if it is not closed. A tableau for ϕ is closed if all its branches are closed and a
tableau proof for ϕ is a closed tableau for ϕ.

Let us illustrate the PASL tableau construction with the formula ϕ ≡ [I∧P∧Q](KaP ∗Q).
We first initialize a tableau for ϕ with [〈{(Fϕ : JK,c1)},{c1 ' c1}〉] and introduce the following
representation:

[F ]

(F[I∧P∧Q](KaP∗Q) : JK,c1)

[C ]

c1 ' c1

The column on left-hand side represents the labelled formula sets of the CSS of the tableau ([F ])
and the column on right-hand side represents the constraint sets of the CSS of ([C ]). By applying
rules on this tableau, we obtain the tableau for ϕ that is given in Fig. 8.
Let us note that we decorate a labelled formula (resp. constraint) with

√
i to show that we apply

a rule on this formula (resp. constraint) at step i. Let us focus on rule applications at steps 6 and
5. The step 6 consists in applying the rule 〈FK〉 on the labelled formula (FKaP : JI∧P∧QK,c1).
Then in order to apply this rule we have to choose a new resource constant (c2). Then we can
apply the rule introducing, in the branch, the labelled formula (FP : JI∧P∧QK,c2) and the agent
constraint c1 P

JI∧P∧QK
a c2. The step 5 consists in applying the rule 〈F∗〉 on the labelled formula

(FKaP ∗Q : JI∧P∧QK,c1). Then we have to choose y and z such that c1 ' yz ∈ C . We have
c1 ' c1c1 ∈ C , indeed

c1 ' ε

c1 ' c1 (definition)
εc1 ' εc1 〈cr〉c1c1 ' εc1 (definition)c1c1 ' c1 〈sr〉c1 ' c1c1

Therefore we can choose y = c1 and z = c1 and apply the rule, adding to the first branch
(FKaP : JI∧P∧QK,c1) and to the second branch (FQ : JI∧P∧QK,c1).
We observe that at step 7, the rule 〈Rpop〉 is applied on the agent constraint c1P

JI∧P∧QK
a c2 and that

the tableau branches are closed (denoted ×). In particular, the fifth branch on the right-hand side
is closed because (TQ : JK,c1) ∈ F , (FQ : JI∧P∧QK,c1) ∈ F and c1 ' c1 ∈ C . In conclusion,
we have a closed tableau proof for the formula [I∧P∧Q](KaP∗Q).
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[F ]
√

1 (F[I∧P∧Q](KaP∗Q) : JK,c1)

√
2 (TI∧P∧Q : JK,c1)

√
5 (FKaP∗Q : JI∧P∧QK,c1)

√
4 (TI : JK,c1)

√
3 (TP∧Q : JK,c1)

(TP : JK,c1)

(TQ : JK,c1)

√
6 (FKaP : JI∧P∧QK,c1) (FQ : JI∧P∧QK,c1)

×(FP : JI∧P∧QK,c2)

(TI∧P∧Q : JK,c1)√
8 (TI∧P∧Q : JK,c2)

√
10 (FI∧P∧Q : JK,c1)

(FI∧P∧Q : JK,c2)

(TI : JK,c2)√
9 (TP∧Q : JK,c2)

(TP : JK,c2)

(TQ : JK,c2)

×

(FI : JK,c1)

×

√
11 (FP∧Q : JK,c1)

(FP : JK,c1) (FQ : JK,c1)

× ×

[C ]

c1 ' c1

.JI∧P∧QK

c1 ' ε

√
7 c1 P

JI∧P∧QK
a c2

Fig. 8. Tableau for [I∧P∧Q](KaP∗Q)

4.3. Soundness of the PASL calculus

In this subsection, we show the soundness of our tableaux method for PASL. The proof uses
similar techniques as the ones used in BI for a labelled tableaux method [Galmiche et al. 2005].
The key point consists in considering the notion of realizability of a CSS 〈F ,C 〉, meaning that
there exists a model M and an embedding |.| from the resource labels to the resource set of M
such that if (Tϕ : Jψ1; ...;ψkK,x) ∈ F then |x| �M |ψ1|...|ψk

ϕ, and if (Fϕ : Jψ1; ...;ψkK,x) ∈ F then
|x| 6�M |ψ1|...|ψk

ϕ.
Such embeddings are firstly defined as functions |.| : Ar(C )→ R. Then, we implicitly extend
them to Dr(C )⇀ R, that is for all ci1 . . .cin ∈Dr(C ), |ci1 . . .cin |= |ci1 | • . . .• |cin | and |ε|= e. We
remark that |x| can be undefined, because resource composition is a partial function.

Definition 4.16 (Realization). Let 〈F ,C 〉 be a CSS. A realization of 〈F ,C 〉 is a pair R =

(M , |.|) where M = (R ,{∼a}a∈A,V ) is a model and |.| : Dr(C )→ R, such that:

— |ε|= e
— |.| is a total function: for all x ∈Dr(C ), |x| is defined
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— If (Tϕ : Jψ1; ...;ψkK,x) ∈ F then |x| �M |ψ1|...|ψk
ϕ

— If (Fϕ : Jψ1; ...;ψkK,x) ∈ F then |x| 6�M |ψ1|...|ψk
ϕ

— If x' y ∈ C then |x|= |y|
— If xPJψ1;...;ψkK

u y ∈ C then |x| ∼u |y| in the updated model M |ψ1|...|ψk

We say that a CSS is realizable if there exists a realization of this CSS. We say that a tableau
is realizable if at least one of its branches is realizable.

Proposition 4.17. Let 〈F ,C 〉 be a CSS and R= (M , |.|) a realization of it. R is a realization of
〈F ,C 〉, in other words:

1 For all x ∈Dr(C ), |x| is defined
2 If x' y ∈ C then |x|= |y|
3 If xPJψ1;...;ψkK

u y ∈ C then |x| ∼u |y| in the updated model M |ψ1|...|ψk

Proof. The detailed proof is given in Appendix B.

Lemma 4.18. Rules of the PASL tableaux calculus preserve realizability.

Proof. Let T be a realizable tableau. By definition, T contains a realizable branch B = 〈F ,C 〉.
Let R= (M , |.|) a realization of the branch B , where M = (R ,{∼a}a∈A,V ) and |.| : Dr(C )→ R.
If we apply a rule on a labelled formula of another branch than B then B is not modified and T
stays realizable. Else, we prove by case on the formula or agent constraint whose is applied the
rule. The detailed proof is given in Appendix C.

Lemma 4.19. Closed branches are not realizable.

Proof. Let 〈F ,C 〉 a closed branch. We suppose that it is realizable. Let R = (M , |.|) a re-
alization of it. Then we consider the five cases of closure in Definition 4.15. For instance, for
(Tp : Jϕ1; ...;ϕkK,x) ∈ F , (Fp : Jψ1; ...;ψlK,y) ∈ F and x ' y ∈ C , by definition of realization
and Proposition 4.17, we have |x| �M |ϕ1|...|ϕk

p, |y| 6�M |ψ1|...|ψl
p and |x| = |y|. Again by defini-

tion, we have |x| ∈ V (p) and |y| 6∈ V (p), which is absurd. The other cases are similar and as all
cases are absurd, we conclude that 〈F ,C 〉 is not realizable.

Theorem 4.20 (Soundness). If there exists a tableau proof for a formula ϕ then ϕ is valid.

Proof. We suppose that there exists a tableau proof for ϕ. Then there is a closed tableau Tϕ for
the CSS C = 〈{(Fϕ : JK,c1)},{c1 ' c1}〉. Let us now suppose that ϕ is not valid. Then there is
a countermodel M = (R ,{∼a}a∈A,V ) and a resource r ∈ R such that r 6�M ϕ. Let R= (M , |.|)
such that |c1| = r. We remark that R is a realization of C. By Lemma 4.18, Tϕ is realizable. By
Lemma 4.19, Tϕ cannot be closed. But, this is absurd because Tϕ is a tableau proof and is by
definition closed. Therefore ϕ is valid.

Coming back to our example, as we have a closed tableau proof for [I∧P∧Q](KaP∗Q) we can
deduce that this formula is valid.
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4.4. A Countermodel Extraction Method

We propose a countermodel extraction method, adapted from [Larchey-Wendling 2016], that
consists in transforming the sets of constraints of a branch 〈F ,C 〉 into a model M such that if
(Tϕ : x,∈)F then [x] �M ϕ and if (Fϕ : x,∈)F then [x] 6�M ϕ, where [x] is the equivalence class
of x, First we have to define when a CSS 〈F ,C 〉 is a Hintikka CSS.

Definition 4.21 (Hintikka CSS). A CSS 〈F ,C 〉 is a Hintikka CSS iff for any formula ϕ,ψ,ψ1, ..,

ψk ∈ L and any resource label x,y ∈ Lr, any agent u ∈ A and any list of formulae µ and κ:

1 (Tp : µ,x) 6∈ F or (Fp : κ,y) 6∈ F or x' y 6∈ C
2 (Tϕ : µ,x) 6∈ F or (Fϕ : µ,y) 6∈ F or x' y 6∈ C
3 (FI : µ,x) 6∈ F or x' ε 6∈ C
4 (F> : µ,x) 6∈ F
5 (T⊥ : µ,x) 6∈ F
6 If (TI : µ,x) ∈ F then x' ε ∈ C
7 If (T¬ϕ : µ,x) ∈ F then (Fϕ : µ,x) ∈ F
8 If (F¬ϕ : µ,x) ∈ F then (Tϕ : µ,x) ∈ F
9 If (Tϕ∧ψ : µ,x) ∈ F then (Tϕ : µ,x) ∈ F and (Tψ : µ,x) ∈ F
10 If (Fϕ∧ψ : µ,x) ∈ F then (Fϕ : µ,x) ∈ F or (Fψ : µ,x) ∈ F
11 If (Tϕ∨ψ : µ,x) ∈ F then (Tϕ : µ,x) ∈ F or (Tψ : µ,x) ∈ F
12 If (Fϕ∨ψ : µ,x) ∈ F then (Fϕ : µ,x) ∈ F and (Fψ : µ,x) ∈ F
13 If (Tϕ→ ψ : µ,x) ∈ F then (Fϕ : µ,x) ∈ F or (Tψ : µ,x) ∈ F
14 If (Fϕ→ ψ : µ,x) ∈ F then (Tϕ : µ,x) ∈ F and (Fψ : µ,x) ∈ F
15 If (Tϕ∗ψ : µ,x) ∈ F then ∃y,z ∈ Lr, x' yz ∈ C and (Tϕ : µ,y) ∈ F and

(Tψ : µ,z) ∈ F
16 If (Fϕ∗ψ : µ,x) ∈ F then ∀y,z ∈ Lr, x' yz ∈ C ⇒ (Fϕ : µ,y) ∈ F or (Fψ : µ,z) ∈ F
17 If (Tϕ−∗ψ : µ,x) ∈ F then ∀y ∈ Lr, xy ∈Dr(C )⇒ (Fϕ : µ,y) ∈ F or (Tψ : µ,xy) ∈ F
18 If (Fϕ−∗ψ : µ,x) ∈ F then ∃y ∈ Lr, xy ∈Dr(C ) and (Tϕ : µ,y) ∈ F and

(Fψ : µ,xy) ∈ F
19 If (TKuϕ : µ,x) ∈ F then ∀y ∈ Lr, xPµ

u y ∈ C ⇒ (Tϕ : µ,y) ∈ F
20 If (FKuϕ : µ,x) ∈ F then ∃y ∈ Lr, xPµ

u y ∈ C and (Fϕ : µ,y) ∈ F
21 If (TK̃uϕ : µ,x) ∈ F then ∃y ∈ Lr, xPµ

u y ∈ C and (Tϕ : µ,y) ∈ F
22 If (FK̃uϕ : µ,x) ∈ F then ∀y ∈ Lr, xPµ

u y ∈ C ⇒ (Fϕ : µ,y) ∈ F
23 If (T[ϕ]ψ : µ,x) ∈ F then (Fϕ : µ,x) ∈ F or (Tψ : µ⊕ JϕK,x) ∈ F
24 If (F[ϕ]ψ : µ,x) ∈ F then (Tϕ : µ,x) ∈ F and (Fψ : µ⊕ JϕK,x) ∈ F
25 If (T〈ϕ〉ψ : µ,x) ∈ F then (Tϕ : µ,x) ∈ F and (Tψ : µ⊕ JϕK,x) ∈ F
26 If (F〈ϕ〉ψ : µ,x) ∈ F then (Fϕ : µ,x) ∈ F or (Fψ : µ⊕ JϕK,x) ∈ F
27 If xPJψ1;...;ψkK

u y ∈ C then one at least of these conditions holds:
- (Tψk : Jψ1; ...;ψk−1K,x) ∈ F and (Tψk : Jψ1; ...;ψk−1K,y) ∈ F ;
- (Fψk : Jψ1; ...;ψk−1K,x) ∈ F and (Fψk : Jψ1; ...;ψk−1K,y) ∈ F .

28 If xPµ
u y ∈ C and .µ⊕ JϕK ∈ C then one at least of these conditions holds:

- xPµ⊕JϕK
u y ∈ C ;

- (Tϕ : µ,x) ∈ F and (Fϕ : µ,y) ∈ F ;
- (Fϕ : µ,x) ∈ F and (Tϕ : µ,y) ∈ F .
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In this definition, the four first conditions certify that a Hintikka CSS is not closed and the
other that all labelled formulae of a Hintikka CSS are fulfilled [Larchey-Wendling 2016].
In order to extract a countermodel from a Hintikka CSS, we manipulate equivalence classes. The
equivalence class of x ∈Dr(C ) is the set [x] = {y ∈ Lr | x' y ∈ C}. We also denote Dr(C )/' =

{[x] | x∈Dr(C )} the set of all equivalence classes of Dr(C ). We observe that' is an equivalence
relation, because it is reflexive (by Corollary 4.7), symmetric (by rule 〈sr〉) and transitive (by rule
〈tr〉). Then we define a function Ω that allows us to extract a countermodel from a Hintikka CSS.

Definition 4.22 (Function Ω). Let 〈F ,C 〉 be a Hintikka CSS. The function Ω associates to
〈F ,C 〉 a 3-uplet Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ), where R = (R,•,e), such that:

— R = Dr(C )/'
— e = [ε]

— [x]• [y] =
{
↑ if xy 6∈Dr(C )

[xy] otherwise

— For all a ∈ A, [x]∼a [y] iff xPJK
a y ∈ C

— [x] ∈V (p) iff ∃y ∈ Lr such that y' x ∈ C and (Tp : µ,y) ∈ F

Lemma 4.23. Let 〈F ,C 〉 be a Hintikka CSS. Ω(〈F ,C 〉) is a model.

Proof. We show that Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ), where R = (R,•,e), is a model.
We first show that R = (R,•,e) is a PRM and then that, for all a ∈ A,∼a⊆ R×R is well-defined,
reflexive, symmetric and transitive. Obviously, the valuation V is well-formed, meaning that if
[x] ∈V (p) and x' x′ ∈ C then [x′] ∈V (p).

Lemma 4.24. Let 〈F ,C 〉 be a Hintikka CSS and M = Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ), where
R = (R,•,e). For all formulae ϕ ∈ L , all Jψ1; ...;ψkK ∈ Da(C), all agents a ∈ A and all x,y ∈
Dr(C ), we have:

(1) xPJψ1;...;ψkK
a y ∈ C iff [x]∼a [y] in the model M |ψ1|...|ψk

(2) If (Fϕ : Jψ1; ...;ψkK,x) ∈ F then [x] 6�M |ψ1|...|ψk
ϕ

(3) If (Tϕ : Jψ1; ...;ψkK,x) ∈ F then [x] �M |ψ1|...|ψk
ϕ

Proof. These properties are proved simultaneously by induction on len(x PJψ1;...;ψkK
a y) and

len(M |ψ1|...|ψk) for the property (1) and on len(Sϕ : µ,x) for the properties (2) and (3), where
len is defined as follows :
len(xPJψ1;...;ψkK

a y) = 2+ len(Jψ1; ...;ψkK)
len(M |ψ1|...|ψk) = 2+ len(Jψ1; ...;ψkK)
len(Sϕ : Jψ1; ...;ψkK,x) = 1+ len(ϕ)+ len(Jψ1; ...;ψkK)
len(p) = len(>) = len(⊥) = len(I) = 1.
len(ϕ1∧ϕ2) = len(ϕ1∨ϕ2) = len(ϕ1→ ϕ2) = len(ϕ1 ∗ϕ2) = len(ϕ1−∗ϕ2)

= 1+ len(ϕ1)+ len(ϕ2)

len(¬ϕ) = len(Kaϕ) = len(K̃aϕ) = 1+ len(ϕ)
len([ϕ1]ϕ2) = len(〈ϕ1〉ϕ2) = 1+ len(ϕ1)+ len(ϕ2)

len(Jψ1; ...;ψkK) = len(ψ1)+ ...+ len(ψk).
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[F ]
√

1 (F[P∧Q]Ka(P∗Q) : JK,c1)

√
2 (TP∧Q : JK,c1)

√
3 (FKa(P∗Q) : JP∧QK,c1)

(TP : JK,c1)

(TQ : JK,c1)

√
4
√

5 (FP∗Q : JP∧QK,c2)

(FP : JP∧QK,ε) (FQ : JP∧QK,c2)

...
(FQ : JP∧QK,ε) (FP : JP∧QK,c2)

...
(TP∧Q : JK,c1)√
7 (TP∧Q : JK,c2)

(TP : JK,c2)

(TQ : JK,c2)

B

...

[C ]

c1 ' c1

.JP∧QK

√
6 c1 P

JP∧QK
a c2

...

...

Fig. 9. Tableau for [P∧Q]Ka(P∗Q)

Let us note that this induction is more complex than the one used in the proof of the corre-
sponding result for some BBI variants [Courtault and Galmiche 2015]. The detailed proof is
given in appendix D.

Lemma 4.25. Let 〈F ,C 〉 be a Hintikka CSS such that (Fϕ : x,∈)F . The formula ϕ is not valid
and Ω(〈F ,C 〉) is a countermodel of ϕ.

Proof. Let 〈F ,C 〉 be a Hintikka CSS such that (Fϕ : JK,x) ∈ F . Let K = Ω(〈F ,C 〉). By
Lemma 4.23, K is a model. As 〈F ,C 〉 is a CSS, then by (Pcss) and Corollary 4.7, x ∈ Dr(C ).
Thus, by Lemma 4.24, we have [x] 6�M ϕ. Therefore K is a countermodel of the formula ϕ and
we can conclude that ϕ is not valid.

Let us illustrate this extraction method with an example. We consider that A = {a} and we
show that the formula [P∧Q]Ka(P ∗Q) is not valid and we extract a countermodel of it. By
applying tableau rules, we obtain the tableau of Fig. 9.
This tableau contains a branch (denoted B) which is a Hintikka CSS. By Lemma 4.25, we can
deduce that [P∧Q]Ka(P∗Q) is not valid and Ω(B) is a countermodel of this formula.
We extract this countermodel, using Definition 4.22.
We have M = Ω(B) = (R ,{∼a}a∈A,V ), where R = (R,•,e), such that:

— R = Dr(C )/' = {e, [c1], [c2]}, where e = [ε].
— The resource composition • is given by:
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• e [c1] [c2]

e e [c1] [c2]

[c1] [c1] ↑ ↑

[c2] [c2] ↑ ↑

— The equivalence relation, where the reflexivity is not represented:

e [c1] [c2]
a

— V (P) = {[c1], [c2]} and V (Q) = {[c1], [c2]}
We can easily verify that this model is a countermodel of [P∧Q]Ka(P∗Q).

4.5. Completeness of the PASL calculus

The proof of completeness for PASL is an extension of the one for BBI [Larchey-Wendling 2016]
to our epistemic connectives. It consists in building a Hintikka CSS from a CSS which can be
closed. In order to build this Hintikka CSS, we use a fair strategy and an oracle.

Definition 4.26 (Fair strategy). A fair strategy is a sequence of labelled formulae, agent con-
straints and announcement constraint (Si)i∈N in ({T,F}×L ×LL ×Lr)∪ (Lr×LL ×A×Lr)∪
(LL) such that all labelled formulae, all agent constraints and all announcement constraints oc-
cur infinitely many times in this sequence, that is {i ∈N | Si ≡ (SF : µ,x)}, {i ∈N | Si ≡ xPµ

u y}
and {i ∈ N | Si ≡ .µ} are infinite for any (SF : µ,x) ∈ {T,F}×L ×LL × Lr, any x Pµ

u y ∈
Lr×LL ×A×Lr and any .µ ∈ LL .

Proposition 4.27. There exists a fair strategy.

Proof. Let X = ({T,F}×L ×LL ×Lr)∪ (Lr×LL ×A×Lr)∪ (LL). As Prop is countable
then L is countable and then LL is also countable. Moreover, Lr is countable (remember that
γr is countable). Therefore, X is countable. Then N×X is countable and there exists a surjec-
tive function ϕ : N −→ N×X . Let p : N×X −→ X defined by p(i,x) = x and u = p ◦ϕ. We
show that u is a fair strategy by showing that for any x ∈ X , u−1({x}) is infinite. Let x ∈ X .
u−1({x}) = ϕ−1(p−1({x})). But p−1({x}) = {(i,x)|i ∈ N} then p−1(x) is infinite. As ϕ is sur-
jective ϕ−1(p−1({x})) is also infinite.

Definition 4.28. Let P be a set of CSS.

1 P is 4-closed if 〈F ,C 〉 ∈ P holds whenever 〈F ,C 〉4 〈F ′,C ′〉 and 〈F ′,C ′〉 ∈ P holds.
2 P is of finite character if 〈F ,C 〉 ∈ P holds whenever 〈F f ,C f 〉 ∈ P holds for 〈F f ,C f 〉 4 f

〈F ,C 〉.
3 P is saturated if for any 〈F ,C 〉 ∈ P and any instance

cond(F ,C )

〈F1,C1〉 | . . . | 〈Fk,Ck〉
of a rule of Fig. 7, if the condition cond(F ,C ) is fulfilled then 〈F ∪Fi,C ∪Ci〉 ∈ P for at
least one i ∈ {1, . . . ,k}.
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Definition 4.29 (Oracle). An oracle is a set of non closed CSS which is 4-closed, of finite
character and saturated.

Lemma 4.30. There exists an oracle which contains every finite CSS for which there exists no
closed tableau.

Proof. The proof is an adaptation of proof of completeness of tableaux for BBI [Larchey-
Wendling 2016]. The detailed proof is given in Appendix G.

In order to prove the completeness of our tableau calculus we consider a formula ϕ for which
there exists no proof and we show that there exists a countermodel for this formula. We denote
T0 the initial tableau for ϕ. Then, we have

1 T0 = [〈{(Fϕ : JK,c1)},{c1 ' c1}〉]
2 T0 cannot be closed

Now, we present a way to obtain a Hintikka CSS, which will allow us to conclude to the com-
pleteness. By Lemma 4.30, there exists an oracle which contains every finite CSS for which there
exists no closed tableau. We denote P this oracle. By Proposition 4.27, there exists a fair strategy.
We denote S this strategy and Si the ith formula or agent constraint of S . As T0 cannot be closed
then its unique branch belongs to the oracle, that is 〈{(Fϕ : JK,c1)},{c1 ' c1}〉 ∈ P .

Now, we built a sequence 〈Fi,Ci〉i>0 as follows:

— 〈F0,C0〉= 〈{(Fϕ : JK,c1)},{c1 ' c1}〉
— Si is a labelled formula of the form (SFi : µ,x):

– If 〈F〉∪{(SFi : µ,x)},Ci〉 6∈ P then we have 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
– If 〈F〉∪{(SFi : µ,x)},Ci〉 ∈P then we have 〈Fi+1,Ci+1〉= 〈Fi∪{(SFi : µ,x)}∪Fe,Ci∪Ce〉

such that Fe and Ce are determined by:

S Fi Fe Ce

T I /0 {x' ε}

T ϕ∗ψ {(Tϕ : µ,a),(Tψ : µ,b)} {x' ab}

F ϕ−∗ψ {(Tϕ : µ,a),(Fψ : µ,xa)} {xa' xa}

F Kuϕ {(Fϕ : µ,a)} {xPµ
u a}

T K̃uϕ {(Tϕ : µ,a)} {xPµ
u a}

Otherwise /0 /0

with a= c2i+2 and b= c2i+3.

— Si is an agent constraint of the form xPµ
u y:

– If γr ∩ (E(x)∪E(y)) 6⊆ {c1, ...,c2i+1} then we have 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
– If 〈Fi,Ci∪{xPµ

u y}〉 6∈ P then we have 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
– If 〈Fi,Ci∪{xPµ

u y}〉 ∈ P then we have 〈Fi+1,Ci+1〉= 〈Fi,Ci∪{xPµ
u y}〉

Proposition 4.31. For any i ∈ N, the following properties hold:
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1 (Fϕ : JK,c1) ∈ Fi and c1 ' c1 ∈ Ci

2 Fi ⊆ Fi+1 and Ci ⊆ Ci+1

3 〈Fi,Ci〉i>0 ∈ P
4 Ar(Ci)⊆ {c1,c2, . . . ,c2i+1}

Proof. Property 1. holds for i = 0. As 〈Fi+1,Ci+1〉 is an extension (∪) of 〈Fi,Ci〉 then this
property also holds for all i > 0. Property 2. holds because 〈Fi+1,Ci+1〉 is an extension (∪) of
〈Fi,Ci〉. Properties 3. and 4. are proved by simultaneous induction on i. The detailed proof is
given in Appendix E

We now consider the limit CSS 〈F∞,C∞〉 of the sequence 〈Fi,Ci〉i>0 defined by:

F∞ =
⋃
i>0

Fi and C∞ =
⋃
i>0

Ci

Proposition 4.32. The following properties hold:

1 〈F∞,C∞〉 ∈ P
2 For any labelled formula (Sϕ : µ,x), if 〈F∞∪{(Sϕ : µ,x)},C∞〉 ∈ P then (Sϕ : µ,x) ∈ F∞.
3 For any agent constraint xPµ

u y, if 〈F∞,C∞∪{xPµ
u y}〉 ∈ P then xPµ

u y ∈ C∞.

Proof. We prove that 〈F∞,C∞〉 is a CSS, meaning that it satisfies properties (Pcss). Let (Sϕ :
µ,x) ∈ F∞. We show that x ' x ∈ C∞ and µ ∈ Da(C ). By definition of F∞, there is i such that
(Sϕ : µ,x) ∈ Fi. By property 3 of Proposition 4.31, 〈Fi,Ci〉 ∈ P . Then 〈Fi,Ci〉 is a CSS and, by
(Pcss), x ' x ∈ Ci and µ ∈ Da(Ci). Thus, by construction, x ' x ∈ C∞ and µ ∈ Da(C∞). We now
prove the properties 1, 2 and 3.

1 Let 〈F f ,C f 〉4 f 〈F∞,C∞〉. As F f and C f are finite and as the sequence 〈Fi,Ci〉i>0 is increasing
by property 2 of Proposition 4.31, then there is j ∈ N such that 〈F f ,C f 〉 4 〈F j,C j〉. By
property 3 of Proposition 4.31, 〈F j,C j〉 ∈ P . As P is 4-closed then we have 〈F f ,C f 〉 ∈ P .
Thus for all 〈F f ,C f 〉 4 f 〈F∞,C∞〉, we have 〈F f ,C f 〉 ∈ P . Therefore 〈F∞,C∞〉 ∈ P , because
P is of finite character.

2 Let (Sϕ : µ,x) such that 〈F∞ ∪ {(Sϕ : µ,x)},C∞〉 ∈ P . By property (Pcss), x ' x ∈ C∞ and
µ ∈Da(C∞). By Proposition 4.9, .µ ∈ C∞. By compactness (Lemma 4.11), there is C f1 ⊆ C∞

and C f2 ⊆ C∞ such that C f1 and C f2 are finite and x' x ∈ C f1 and .µ ∈ C f2 . As the sequence
is increasing, by property 2 of Proposition 4.31, there is j ∈N such that (C f1 ∪C f2)⊆ C j. As
(Sϕ : µ,x) occurs infinitely many times in our fair strategy S , there is k > j such that Sk =

(Sϕ : µ,x). Moreover C j ⊆Ck. Then x' x∈Ck and .µ∈Ck (so µ∈Da(Ck)). Thus 〈Fk∪{(Sϕ :
µ,x)},Ck〉 is a CSS (satisfies the property (Pcss)) and 〈Fk ∪{(Sϕ : µ,x)},Ck〉 4 〈F∞∪{(Sϕ :
µ,x)},C∞〉, by definition of limit CSS. As P is4-closed then 〈Fk∪{(Sϕ : µ,x)},Ck〉 ∈ P . By
construction of 〈Fk+1,Ck+1〉, (Sϕ : µ,x) ∈ Fk+1. Therefore (Sϕ : µ,x) ∈ F∞.

3 Let x Pµ
u y such that 〈F∞,C∞ ∪{x Pµ

u y}〉 ∈ P . Let k = max{i ∈ N | ci ∈ E(x)∪E(y)}. As
xPµ

u y occurs infinitely many times in our fair strategy S , there is l > k such that Sl = xPµ
u y.

We have 〈Fl ,Cl ∪{x Pµ
u y}〉 4 〈F∞,C∞ ∪{x Pµ

u y}〉, by definition of limit CSS. As P is 4-
closed then 〈Fl ,Cl ∪{x Pµ

u y}〉 ∈ P . Moreover, as γr ∩ (E(x)∪E(y)) ⊆ {c1, ...,c2l+1} then,
by construction of 〈Fl+1,Cl+1〉, xPµ

u y ∈ Cl+1. Therefore xPµ
u y ∈ C∞.
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Lemma 4.33. The limit CSS is a Hintikka CSS.

Proof. By property 1 of Proposition 4.32, 〈F∞,C∞〉 ∈ P . We verify that all conditions of Def-
inition 4.21 hold. The detailed proof is given in Appendix F.

Theorem 4.34 (Completeness). Let ϕ be a formula. If ϕ is valid then there exits a proof for ϕ.

Proof. We suppose that there is no proof for the formula ϕ. We show that ϕ is not valid. The
method that we present here allows us to build a limit CSS 〈F∞,C∞〉 that is a Hintikka CSS, by
Lemma 4.33. By property 1 of Proposition 4.31, (Fϕ : JK,c1) ∈ Fi for any i> 0. By definition of
limit CSS, (Fϕ : JK,c1) ∈ F∞. By Lemma 4.25, ϕ is not valid.

5. Conclusion

In this paper we defined a new logic, called Public Announcement Separation Logic (PASL),
extension of the logic ESL [Courtault et al. 2015] with public announcements, with possible
worlds considered as resources, and then introduced the sharing and the separation on these
worlds. An illustrating example emphasized the power of PASL for modelling and completed this
study about expressivity with the proposal of new modalities combining epistemic and separation
connectives. To complete this study we also provided a tableau calculus, in the spirit of calculi
for BI and BBI [Courtault et al. 2015,Galmiche et al. 2005,Larchey-Wendling 2016], but with
specific labels, constraints and rules for resources, agents and mainly for announcements. We
proved its soundness and completeness by adapting and improving methods previously used
for some modal bunched logics [Courtault and Galmiche 2015,Courtault et al. 2015] and also
provided a method for countermodel extraction. An original point is that constraints are decorated
with stacks of formulas, knowing that for PAL one only decorates formulas.
Future work will be devoted to the study of semantics and calculi for extensions of this logic
that deal with epistemic actions [Baltag et al. 2006]. Extensions with other modalities dealing
with dynamic resources [Courtault and Galmiche 2013,Courtault and Galmiche 2015] will also
be studied. Our work is also an attempt to enrich some separation logics with uncertainty over
composition and decomposition of resources, and by different agents. Here we have studied
separation through BBI logic and its resource semantics but we expect to study such enrichments
from other resource logics and models with separation, like for instance SL based on memory
models and dedicated to program verification [Ishtiaq and O’Hearn 2001,Reynolds 2002].
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Appendix A. Proof of Lemma 4.11

Lemma A.1 (Compactness). Let C be a (possibly infinite) set of constraints:

1 If x' y ∈ C then there is a finite set C f such that C f ⊆ C and x' y ∈ C f

2 If xPµ
u y ∈ C then there is a finite set C f such that C f ⊆ C and xPµ

u y ∈ C f

3 If .µ ∈ C then there is a finite set C f such that C f ⊆ C and .µ ∈ C f

Proof. Let C be a set of constraints. Let c ∈ C be a constraint. If c ∈ C because c ∈ C then by
considering C f = {c}, we have C f ⊆ C and c∈ C f . In the other cases, the constraint c is obtained
by rules of Fig. 6. We prove the Lemma by induction on the size n of the deduction tree of c.

— Base case (n = 0):

– Case rule 〈ε〉: the deduction tree is of the form

〈ε〉
ε' ε

In this case, c is the constraint ε' ε. Considering C f = /0, we have C f ⊆ C and c ∈ C f .

— Inductive step:
We suppose that the properties (1) and (2) hold for deduction trees whose sizes are least or
equal to n (IH). We prove the Lemma for deduction trees such that their sizes are equal to
n+1.

– Case 〈ra〉: the deduction tree is of the form

...
x' x 〈ra〉

xPJK
v x

In this case, c is the constraint xPJK
v x. This deduction tree is finite, and the deduction tree

of x' x has a size lower or equal to n. Then, by (IH), there is a finite set C f ⊆ C such that
x' x ∈ C f . Thus, by the rule 〈ra〉, xPJK

v x ∈ C f .

– Case 〈ka〉: the deduction tree is of the form

...
xPJK

u y

...
x' k

〈ka〉
k PJK

u y

In this case, c is the constraint k PJK
u y. This deduction tree is finite, and the deduction

trees of xPJK
u y and x' k have a size lower or equal to n. Then, by (IH), there are C f1 ⊆ C

and C f2 ⊆ C that are finite and such that xPJK
u y∈ C f1 and x' k ∈ C f2 . Let C f = C f1 ∪C f2 .

Then x PJK
u y ∈ C f and x ' k ∈ C f . Thus, by the rule 〈ka〉, k PJK

u y ∈ C f . Moreover, C f is
finite as the union of two finite sets and C f ⊆ C as the union of two sets included in C .

– Case 〈pa〉: the deduction tree is of the form

...
xPJψ1;...;ψkK

u y
〈pa〉

k PJψ1;...;ψk−1K
u y



30

In this case, c is the constraint k PJψ1;...;ψk−1K
u y. This deduction tree is finite, and the

deduction tree of xPJψ1;...;ψkK
u y has a size equal to n. Then, by (IH), there is C f ⊆ C that

is finite and such that xPJψ1;...;ψkK
u y ∈ C f . Thus, by the rule 〈pa〉, k PJψ1;...;ψk−1K

u y ∈ C f .

– Case 〈an〉:
Deduction tree is of the form

...
xPJψ1;...;ψkK

u y
〈an〉

.Jψ1; ...;ψk−1K
In this case, c is the constraint .Jψ1; ...;ψk−1K. This deduction tree is finite, and the de-
duction tree of x PJψ1;...;ψkK

u has a size equal to n. Then, by (IH), there is C f ⊆ C that is
finite and such that xPJψ1;...;ψkK

u ∈ C f . Thus, by the rule 〈an〉, .Jψ1; ...;ψk−1K ∈ C f .

– The other cases are proved similarly.

Appendix B. Proof of Proposition 4.17

Proposition B.1. Let 〈F ,C 〉 be a CSS and R= (M , |.|) a realization of it. R is a realization of
〈F ,C 〉, in other words:

1 For all x ∈Dr(C ), |x| is defined
2 If x' y ∈ C then |x|= |y|
3 If xPJψ1;...;ψkK

u y ∈ C then |x| ∼u |y| in the updated model M |ψ1|...|ψk

Proof. We prove the properties for all constraints that belong to C . Let c ∈ C be a constraint.
If c ∈ C because c ∈ C then there are two cases:

— c is a constraint of the form x ' y. In this case, x ∈ Dr(C ), y ∈ Dr(C ) and x ' y ∈ C . Then
|x| and |y| are defined, by definition of realization, and we have |x|= |y|.

— c is a constraint of the form xPJψ1;...;ψkK
u y. In this case, x∈Dr(C ), y∈Dr(C ) and xPJψ1;...;ψkK

u

y ∈ C . Then |x| and |y| are defined, and we have |x| ∼u |y| in the updated model M |ψ1|...|ψk.

Else this constraint is obtained by rules of Fig. 6. We prove by mutual induction on size n of the
constraint deduction tree.

— Base case (n = 0):

– Case rule 〈ε〉: the deduction tree is of the form

〈ε〉
ε' ε

In this case c is the constraint ε ' ε. We can remark that |ε| is defined (|ε| = e) and
|ε|= |ε|.

— Inductive step:
We suppose that the Lemma holds for the constraints having a deduction tree whose size is
least or equal to n (IH). We prove the Lemma for the constraints having a deduction tree such
that their sizes are equal to n+1.
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– Case 〈cr〉: the deduction tree is of the form

...
x' y

...
yk ' yk

〈cr〉
xk ' yk

By (IH), |x|, |y| and |yk| are defined. Again by (IH), |x|= |y|. |yk| begin defined, we have,
by definition, |y| • |k| ↓ and |y| • |k| = |yk|. Thus |x| • |k| ↓ and |x| • |k| = |y| • |k|. Then
|xk|= |x| • |k|= |y| • |k|= |yk|. Therefore we have |xk|= |yk|.

– Case 〈kr〉: the deduction tree is of the form

...
xPµ

u y
〈kr〉x' x

By (IH), |x| is defined and we have obviously |x|= |x|.
– Case 〈ra〉: the deduction tree is of the form

...
x' x 〈ra〉

xPJK
v x

By (IH), |x| is defined. By reflexivity, |x| ∼v |x| in the model M .

– Case 〈ka〉:
the deduction tree is of the form

...
xPJK

u y

...
x' k

〈ka〉
k PJK

u y

By (IH), |x|, |y| and |k| are defined and we have |x| ∼u |y| in the model M and |x| = |k|.
Therefore, we have |k| ∼u |x| in the model M .

– Case 〈pa〉: the deduction tree is of the form

...
xPJψ1;...;ψkK

u y
〈pa〉

xPJψ1;...;ψk−1K
u x

By (IH), |x| and |y| are defined. Moreover, again by (IH), |x| ∼u |y| in the updated model
M |ψ1|...|ψk. Then, by definition, |x| ∼u |y| in the updated model M |ψ1|...|ψk−1.

– The other cases are proved similarly.
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Appendix C. Proof of Lemma 4.18

Lemma C.1. Rules of the PASL tableaux calculus preserve realizability.

Proof. Let T be a realizable tableau. By definition, T contains a realizable branch B = 〈F ,C 〉.
Let R= (M , |.|) a realization of the branch B , where M = (R ,{∼a}a∈A,V ) and |.| : Dr(C )→ R.
If we apply a rule on a labelled formula of another branch than B then B is not modified and T
stays realizable. Else, we prove by case on the formula or agent constraint whose is applied the
rule.

— (TI : Jψ1; ...;ψkK,x) ∈ F :
We have, by definition of realization, |x| �M |ψ1|...|ψk

I. Then |x|= e. As |ε|= e then |x|= |ε|
and we remark that R is a realization of the new branch 〈F ,C ∪{x' ε}〉.

— (Tϕ1 ∗ϕ2 : Jψ1; ...;ψkK,x) ∈ F :
By realization, we have |x| �M |ψ1|...|ψk

ϕ1 ∗ϕ2. Then, by definition, there exists r1,r2 ∈ R such
that r1•r2 ↓, |x|= r1•r2, r1 �M |ψ1|...|ψk

ϕ1 and r2 �M |ψ1|...|ψk
ϕ2. As ci and c j are new resource

label constants, |ci| and |c j| are not defined. Moreover as ci 6= c j, we can extend R by setting
|ci|= r1 and |c j|= r2. Remarking that |ci|• |c j| ↓ and, by implicit extension, |x|= |ci|• |c j|=
|cic j|, we obtain a realization of 〈F ,C ∪{x' cic j}〉. Moreover, this realization is a realization
of the new branch 〈F ∪{(Tϕ1 : Jψ1; ...;ψkK,ci),(Tϕ2 : Jψ1; ...;ψkK,c j)},C ∪{x' cic j}〉.

— (Fϕ1 ∗ϕ2 : Jψ1; ...;ψkK,x) ∈ F :
We have |x| 6�M |ψ1|...|ψk

ϕ1 ∗ϕ2. By definition, for all r1,r2 ∈ R such that r1 • r2 ↓ and |x| =
r1•r2, we have r1 6�M |ψ1|...|ψk

ϕ or r2 6�M |ψ1|...|ψk
ψ. The branch is expanded into two branches

that are 〈F ∪ {(Fϕ : Jψ1; ...;ψkK,y)},C 〉 and 〈F ∪ {(Fψ : Jψ1; ...;ψkK,z)},C 〉 where x '
yz ∈ C . By Proposition 4.17, |x| = |yz|. By definition of realization, |.| is total, so |y| • |z| ↓
and |yz| = |y| • |z|. Thus |y| 6�M |ψ1|...|ψk

ϕ or |z| 6�M |ψ1|...|ψk
ψ. Therefore R is a realization

of at least one of the two new branches 〈F ∪ {(Fϕ : Jψ1; ...;ψkK,y)},C 〉 or 〈F ∪ {(Fψ :
Jψ1; ...;ψkK,z)},C 〉.

— (TKaϕ : Jψ1; ...;ψkK,x) ∈ F :
We have |x| �M |ψ1|...|ψk

Kaϕ. Then, by definition, for all r ∈ R such that |x| ∼a r in the up-

dated model M |ψ1|...|ψk, we have r �M |ψ1|...|ψk
ϕ. By rule condition, x PJψ1;...;ψkK

a y ∈ C .
Thus, by Proposition 4.17, we have |x| ∼a |y| in the updated model M |ψ1|...|ψk. Therefore
|y| �M |ψ1|...|ψk

ϕ and we can conclude that R is a realization of the new branch 〈F ∪{(Tϕ :
Jψ1; ...;ψkK,y)},C 〉.

— (FKaϕ : Jψ1; ...;ψkK,x) ∈ F :
By realization, we have |x| 6�M |ψ1|...|ψk

Kaϕ. Then, there is r ∈ R such that |x| ∼a r in the
updated model M |ψ1|...|ψk and r 6�M |ψ1|...|ψk

ϕ. As ci is a new label constants, then |ci| is
not defined. Then, we can extend R such that |ci|= r. Remarking that |x| ∼a |ci| in the model
M |ψ1|...|ψk, we obtain a realization of 〈F ,C ∪{xPJψ1;...;ψkK

a ci}〉. Moreover, this extension
is obviously a realization of the new branch 〈F ∪{(Fϕ : Jψ1; ...;ψkK,ci)},C ∪{x PJψ1;...;ψkK

a

ci}〉.
— (T[ϕ1]ϕ2 : Jψ1; ...;ψkK,x) ∈ F :

By realization |x| �M |ψ1|...|ψk
[ϕ1]ϕ2. Then, if |x| �M |ψ1|...|ψk

ϕ1 then |x| �M |ψ1|...|ψk|ϕ1
ϕ2.

There are two cases:

- Case |x| 6�M |ψ1|...|ψk
ϕ1:



A Public Announcement Separation Logic 33

In this case, we observe that R is a realization of the first new branch 〈F ∪ {(Fϕ1 :
Jψ1; ...;ψkK,x)},C 〉.

- Case |x| �M |ψ1|...|ψk
ϕ1:

Then we have |x| �M |ψ1|...|ψk|ϕ1
ϕ2 and we remark that R is a realization of the second

new branch 〈F ∪{(Tϕ2 : Jψ1; ...;ψk;ϕ1K,x)},C ∪{.Jψ1; ...;ψk;ϕ1K}〉.
— (F[ϕ1]ϕ2 : Jψ1; ...;ψkK,x) ∈ F :

By realization |x| 6�M |ψ1|...|ψk
[ϕ1]ϕ2. Then |x| �M |ψ1|...|ψk

ϕ1 and |x| 6�M |ψ1|...|ψk|ϕ1
ϕ2. Thus

we remark that R is a realization of the new branch 〈F ∪ {(Tϕ1 : Jψ1; ...;ψkK,x),(Fϕ2 :
Jψ1; ...;ψk;ϕ1K,x)},C ∪{.Jψ1; ...;ψk;ϕ1K}〉.

— xPJψ1;...;ψkK
u y ∈ C :

By Proposition 4.17, |x| ∼u |y| in the updated model M |ψ1|...|ψk. By definition, we have
|x| �M |ψ1|...|ψk−1

ψk iff |y| �M |ψ1|...|ψk−1
ψk. There are two cases:

- Case |x| �M |ψ1|...|ψk−1
ψk:

In this case, we have |y| �M |ψ1|...|ψk−1
ψk. Thus R is a realization of the first new branch

〈F ∪{(Tψk : Jψ1; ...;ψk−1K,x),(Tψk : Jψ1; ...;ψk−1K,y)},C 〉.
- Case |x| 6�M |ψ1|...|ψk−1

ψk:
In this case, we have |y| 6�M |ψ1|...|ψk−1

ψk. Thus R is a realization of the second new
branch 〈F ∪{(Fψk : Jψ1; ...;ψk−1K,x),(Fψk : Jψ1; ...;ψk−1K,y)},C 〉.

— xPJψ1;...;ψkK
u y ∈ C and .Jψ1; ...;ψk;ϕK ∈ C :

By Proposition 4.17, |x| ∼u |y| in the updated model M |ψ1|...|ψk. There are two cases:

- |x| ∼u |y| in the updated model M |ψ1|...|ψk|ϕ:
In this case R is a realization of the first new branch 〈F ,C ∪{xPJψ1;...;ψk;ϕK

u y}〉.
- |x| ∼u |y| does not hold in the updated model M |ψ1|...|ψk|ϕ:

There are, by definition, three cases:

- |x| ∼u |y| does not hold in the updated model M |ψ1|...|ψk:
This case is absurd.

- |x| �M |ψ1|...|ψk
ϕ and |y| 6�M |ψ1|...|ψk

ϕ:
Thus R is a realization of the second new branch 〈F ∪{(Tϕ : Jψ1; ...;ψkK,x),(Fϕ :
Jψ1; ...;ψkK,y)},C 〉.

- |x| 6�M |ψ1|...|ψk
ϕ and |y| �M |ψ1|...|ψk

ϕ:
Thus R is a realization of the second new branch 〈F ∪{(Fϕ : Jψ1; ...;ψkK,x),(Tϕ :
Jψ1; ...;ψkK,y)},C 〉.

— Other cases are proved similarly.

Appendix D. Proof of Lemma 4.24

Lemma D.1. Let 〈F ,C 〉 be a Hintikka CSS and M = Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ), where
R = (R,•,e). For all formulae ϕ ∈ L , all Jψ1; ...;ψkK ∈ Da(C), all agents a ∈ A and all x,y ∈
Dr(C ), we have

(1) xPJψ1;...;ψkK
a y ∈ C iff [x]∼a [y] in the model M |ψ1|...|ψk
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(2) If (Fϕ : Jψ1; ...;ψkK,x) ∈ F then [x] 6�M |ψ1|...|ψk
ϕ

(3) If (Tϕ : Jψ1; ...;ψkK,x) ∈ F then [x] �M |ψ1|...|ψk
ϕ

Proof. These properties are proved simultaneously by induction on len(x PJψ1;...;ψkK
a y) and

len(M |ψ1|...|ψk) for the property (1) and on len(Sϕ : µ,x) for the properties (2) and (3), where
for len see Definition 4.24 on page 22:

Base case (len(X) = 2)

— Property (1):

– Let xPJK
a y ∈ C . By definition of Ω, [x]∼a [y] in the model M .

– We suppose now[x] ∼a [y] in the model M . Then, again by definition of Ω, we have
xPJK

a y ∈ C .

— Case (Fp : JK,x) ∈ F such that p ∈ Prop:
We suppose that [x] �M p. Then [x] ∈ V (p). By definition Ω, there are a resource label y
and formulae ψ′1, ...,ψ

′
l ∈ L such that we have y ' x ∈ C and (Tp : Jψ′1; ...;ψ′lK,y) ∈ F .

By condition (1) of Definition 4.21, 〈F ,C 〉 is not a Hintikka CSS. This is absurd, and then
[x] 6�M p.

— Case (Tp : JK,x) ∈ F such that p ∈ Prop:
By property by (Pcss), x' x ∈ C . Then, by definition of Ω, [x] ∈V (p). Thus [x] �M p.

— Case (F⊥ : JK,x) ∈ F :
We have [x] 6�M ⊥, by definition.

— Case (T⊥ : JK,x) ∈ F :
As 〈F ,C 〉 is a Hintikka CSS then, by condition (5) of Definition 4.21, this case is absurd.

— Case (FI : JK,x) ∈ F :
We suppose that [x] �M I. Then [x] = e and, by definition of Ω, we have [x] = [ε]. Therefore
x ' ε ∈ C . Then, by condition (3) of Definition 4.21, 〈F ,C 〉 is not a Hintikka CSS. It is
absurd and we can conclude that [x] 6�M I.

— Case (TI : JK,x) ∈ F :
By condition (3) of Definition 4.21, x' ε ∈ C . Then, by definition of Ω, [x] = [ε] = e. There-
fore [x] �M I.

— The other base cases ((F> : JK,x) ∈ F and (T> : JK,x) ∈ F ) are treated similarly.

Inductive step: we suppose that the properties (1), (2) and (3) hold for len(X)≤ i (IH) and show
the properties for len(X) = i+1.

— Property (1):

– Let xPJψ1;...;ψkK
a y∈ C . By condition (27) of Definition 4.21, (Tψk : Jψ1; ...;ψk−1K,x)∈F

and (Tψk : Jψ1; ...;ψk−1K,y) ∈ F , or we have (Fψk : Jψ1; ...;ψk−1K,x) ∈ F and (Fψk :
Jψ1; ...;ψk−1K,y) ∈ F . By (IH), we have [x] �M |ψ1|...|ψk−1

ψk and [y] �M |ψ1|...|ψk−1
ψk, or

[x] 6�M |ψ1|...|ψk−1
ψk and [y] 6�M |ψ1|...|ψk−1

ψk. Moreover, by rule 〈pa〉, xPJψ1;...;ψk−1K
a y∈ C ,

and by (IH), we have [x] ∼a [y] in the model M |ψ1|...|ψk−1. Thus, we have [x] ∼a [y] in
the model M |ψ1|ψk.

– We suppose now that [x]∼a [y] in the model M |ψ1|...|ψk (and that Jψ1; ...;ψkK∈Da(C)).
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By definition, we have [x] ∼a [y] in the model M |ψ1|...|ψk−1, [x] �M |ψ1|...|ψk−1
ψk and

[y] �M |ψ1|...|ψk−1
ψk, or [x] 6�M |ψ1||ψk−1

ψk and [y] 6�M |ψ1|...|ψk−1
ψk. By (IH) and by Propo-

sition 4.9, we have xPJψ1;...;ψk−1K
a y ∈ C and .Jψ1; ...;ψkK ∈ C . Then by condition (28) of

Definition 4.21, there are three cases:
- xPJψ1;...;ψkK

u y ∈ C .
- (Tψk : Jψ1; ...;ψk−1K,x) ∈ F and (Fψk : Jψ1; ...;ψk−1K,y) ∈ F : this case is absurd, be-
cause by (IH), we would have [x] �M |ψ1|..|ψk−1

ψk and [y] 6�M |ψ1|...|ψk−1
ψk.

- (Fψk : Jψ1; ...;ψk−1K,x) ∈ F and (Tψk : Jψ1; ...;ψk−1K,y) ∈ F : this case is absurd, be-
cause by (IH), we would have [x] 6�M |ψ1|...|ψk−1

ψk and [y] �M |ψ1|...|ψk−1
ψk.

In conclusion, we have xPJψ1;...;ψkK
a y ∈ C iff [x]∼a [y] in the model M |ψ1|...|ψk.

— Case (Fϕ1∧ϕ2 : Jψ1; ...;ψkK,x) ∈ F :
By condition (10) of Definition 4.21, (Fϕ1 : Jψ1; ...;ψkK,x)∈F or (Fϕ2 : Jψ1; ...;ψkK,x)∈F .
Then, by (IH), [x] 6�M |ψ1|...|ψk

ϕ1 or [x] 6�M |ψ1|...|ψk
ϕ2. Thus [x] 6�M |ψ1|...|ψk

ϕ1∧ϕ2.
— Case (Tϕ1∧ϕ2 : Jψ1; ...;ψkK,x) ∈ F :

By condition (9) of Definition 4.21, (Tϕ1 : Jψ1; ...;ψkK,x) ∈ F and (Tϕ2 : Jψ1; ...;ψkK,x) ∈
F . Then, by (IH), [x] �M |ψ1|...|ψk

ϕ1 and [x] �M |ψ1|...|ψk
ϕ2. Thus [x] �M |ψ1|...|ψk

ϕ1∧ϕ2.
— Case (Fϕ1 ∗ϕ2 : Jψ1; ...;ψkK,x) ∈ F :

Let r1,r2 ∈ R such that r1 • r2 ↓ and [x] = r1 • r2. By definition of Ω, there is yz ∈ Dr(C )

such that r1 = [y], r2 = [z] and [x] = [y] • [z] = [yz]. Then x ' yz ∈ C and by condition (16)
of Definition 4.21, (Fϕ1 : Jψ1; ...;ψkK,y) ∈ F or (Fϕ2 : Jψ1; ...;ψkK,z) ∈ F . Then, by (IH),
r1 6�M |ψ1|...|ψk

ϕ1 or r2 6�M |ψ1|...|ψk
ϕ2. Therefore [x] 6�M |ψ1|...|ψk

ϕ1 ∗ϕ2.
— Case (Tϕ1 ∗ϕ2 : Jψ1; ...;ψkK,x) ∈ F :

By condition (15) of Definition 4.21, there are two resource labels y and z such that x' yz ∈
C , (Tϕ1 : Jψ1; ...;ψkK,y)∈ F and (Tϕ2 : Jψ1; ...;ψkK,z)∈ F . By definition of Ω and by (IH),
we have [y]• [z] ↓, [x] = [yz] = [y]• [z] and [y] �M |ψ1|...|ψk

ϕ1 and [z] �M |ψ1|...|ψk
ϕ2. Therefore

[x] �M |ψ1|...|ψk
ϕ1 ∗ϕ2.

— Case (FKuϕ : Jψ1; ...;ψkK,x) ∈ F :
By condition (20) of Definition 4.21, there is a resource label y such that we have xPJψ1;...;ψkK

u

y ∈ C and (Fϕ : Jψ1; ...;ψkK,y) ∈ F . Then, by (IH), there is a resource [y] such that [x]∼u [y]
in the model M |ψ1|...|ψk and [y] 6�M |ψ1|...|ψk

ϕ. Therefore, we have [x] 6�M |ψ1|...|ψk
Kuϕ.

— Case (TKuϕ : Jψ1; ...;ψkK,x) ∈ F :
Let r ∈ R such that [x]∼u r in the model M |ψ1|...|ψk. By (IH), there is resource label y such
that y ∈ Dr(C ), r = [y] and x PJψ1;...;ψkK

u y ∈ C . Thus, by condition (19) of Definition 4.21,
(Tϕ : Jψ1; ...;ψkK,y) ∈ F . Then, by (IH), r �M |ψ1|...|ψk

ϕ. Therefore [x] �M |ψ1|...|ψk
Kuϕ.

— Case (F[ϕ1]ϕ2 : Jψ1; ...;ψkK,x) ∈ F :
By condition (24) of Definition 4.21, (Tϕ1 : Jψ1; ...;ψkK,x) ∈ F , (Fϕ2 : Jψ1; ...;ψk;ϕ1K,x) ∈
F . By (IH), [x] �M |ψ1|...|ψk

ϕ1 and [x] 6�M |ψ1|...|ψk|ϕ1
ϕ2. Therefore [x] 6�M |ψ1|...|ψk

[ϕ1]ϕ2.
— Case (T[ϕ1]ϕ2 : Jψ1; ...;ψkK,x) ∈ F :

We suppose that [x] �M |ψ1|...|ψk
ϕ1 and we show that [x] �M |ψ1|...|ψk|ϕ1

ϕ2. By condition (23)
of Definition 4.21, there are two cases:
- (Fϕ1 : Jψ1; ...;ψkK,x) ∈ F : By (IH), we have [x] 6�M |ψ1|...|ψk

ϕ1, which is absurd.
- (Tϕ2 : Jψ1; ...;ψk;ϕ1K,x) ∈ F : By (IH), we have [x] �M |ψ1|...|ψk|ϕ1

ϕ2.
In conclusion, [x] �M |ψ1|...|ψk

[ϕ1]ϕ2.
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— Other cases are proved similarly.

Appendix E. Proof of Proposition 4.31

Proposition E.1. For any i ∈ N, the following properties hold:

1 (Fϕ : JK,c1) ∈ Fi and c1 ' c1 ∈ Ci

2 Fi ⊆ Fi+1 and Ci ⊆ Ci+1

3 〈Fi,Ci〉i>0 ∈ P
4 Ar(Ci)⊆ {c1,c2, . . . ,c2i+1}

Proof.

1 This property holds for i = 0. As 〈Fi+1,Ci+1〉 is an extension (∪) of 〈Fi,Ci〉 then this property
also holds for all i> 0.

2 This property holds because 〈Fi+1,Ci+1〉 is an extension (∪) of 〈Fi,Ci〉.
3, 4.We prove the properties 3 and 4 simultaneously by induction on i.

- The base case (i = 0) obviously holds: as 〈F0,C0〉 = 〈{(Fϕ : µ,c1)},{c1 ' c1}〉 then we
remark that the property 4 holds and property 3 holds by hypothesis.
- We prove now the inductive case. We suppose that the properties 3 and 4 hold for i = n (IH)
and show that they hold for i = n+1, by case on the form of Si.
If Sn is a labelled formula of the form (SF : µ,x) then

— If 〈Fn∪{(SF : µ,x)},Cn〉 6∈ P then 〈Fn+1,Cn+1〉= 〈Fn,Cn〉. Then the properties 3 and 4
hold by (IH).

— If 〈Fn∪{(SF : µ,x)},Cn〉 ∈ P then it is a CSS (the elements of P are CSS, by definition).
Then, by (Pcss), xn ' xn ∈ Cn. Thus, we have γr ∩E(xn)⊆ Ar(Cn). Therefore, by Propo-
sition 4.10, γr ∩E(xn)⊆ Ar(Cn) (1). There are six cases:
- If Sn = T and Fn = I:
In this case, 〈Fn+1,Cn+1〉= 〈Fn∪{(SF : µ,x)},Cn∪{xn ' ε}〉. By saturation of P , apply-
ing the rule 〈TI〉, we have 〈Fn+1,Cn+1〉 ∈ P . Then property 3 holds. By (1), we remark
that Ar(Cn+1) = Ar(Cn). Then, by (IH), the property 4 holds.
- Case Sn = T and Fn = ϕ∗ψ:
〈Fn+1,Cn+1〉= 〈Fn∪{(SF : µ,x)}∪{(Tϕ : µ,c2n+2),(Tψ : µ,c2n+3)},Cn∪{x' c2n+2c2n+3}〉.
By (IH), c2n+2 6∈ Ar(Cn) and c2n+3 6∈ Ar(Cn), then they are new resource label constants.
Moreover, as 〈Fn ∪ {(SF : µ,x)},Cn〉 ∈ P then, by saturation for rule 〈T∗〉 and using
the labels c2n+2 and c2n+3, 〈Fn+1,Cn+1〉 ∈ P . Thus property 3 holds. Moreover, by (1),
Ar(Cn+1) = Ar(Cn)∪{c2n+2,c2n+3}. Then, by (IH), the property 4 holds.
- Case Sn = F and Fn = ϕ−∗ψ:
This case is proved similarly.
- Case Sn = F and Fn = Kuϕ:
In this case 〈Fn+1,Cn+1〉= 〈Fn∪{(SF : µ,x)}∪{(Fϕ : c2n+2,}),Cn∪{xn P

µ
u c2n+2}〉. By

(IH), c2n+2 6∈ Ar(Cn), then it is a resource label constant. As 〈Fn∪{(SF : µ,x)},Cn〉 ∈ P
then, by saturation for rule 〈FKu〉 and using the label c2n+2, 〈Fn+1,Cn+1〉 ∈ P . Thus prop-
erty 3 holds. Moreover, by (1), Ar(Cn+1) = Ar(Cn)∪{c2n+2}. Then, by (IH), the property
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4 holds.
- Case Sn = T and Fn = K̃uϕ:
This case is proved similarly.
- In the last case, 〈Fn+1,Cn+1〉 = 〈Fn ∪{(SF : µ,x)},Cn〉. By hypothesis, 〈Fn ∪{(SF :
µ,x)},Ci〉 ∈ P , then property 3 holds. The property 4 holds by (IH), because Ar(Cn+1) =

Ar(Cn).

If Sn is an agent constraint of the form xPµ
u y then

— If γr ∩ (E(x)∪E(y)) 6⊆ {c1, ...,c2n+1} then 〈Fn+1,Cn+1〉= 〈Fn,Cn〉. Then the properties
3 and 4 hold by (IH).

— If 〈Fi,Ci∪{xPµ
u y}〉 6∈ P then 〈Fn+1,Cn+1〉= 〈Fn,Cn〉. Then the properties 3 and 4 hold

by (IH).

— If 〈Fn,Cn ∪ {x Pµ
u y}〉 ∈ P then 〈Fn+1,Cn+1〉 = 〈Fn,Cn ∪ {x Pµ

u y}〉, so the property 3
holds. As γr ∩ (E(x)∪E(y))⊆ {c1, ...,c2n+1}, then the property 4 holds by (IH).

Appendix F. Proof of Lemma 4.33

Lemma F.1. The limit CSS is a Hintikka CSS.

Proof. By property 1 of Proposition 4.32, 〈F∞,C∞〉 ∈ P . We verify that all conditions of Def-
inition 4.21 hold.

1 We suppose that (Tp : µ,x) ∈ F∞ and (Fp : κ,y) ∈ F∞ and x ' y ∈ C∞. Then 〈F∞,C∞〉 is
closed. Thus, by definition of oracle, 〈F∞,C∞〉 6∈ P . This is absurd, by Proposition 4.32. Then
condition 1 of Definition 4.21 holds.

2 This case is similar to condition 1.
3 This case is similar to condition 1.
4 This case is similar to condition 1.
5 This case is similar to condition 1.
6 We suppose that (TI : µ,x)∈F∞. Then there is j ∈N such that (TI : µ,x)∈F j. Moreover there

exists k> j such that Sk = (TI : µ,x). As the sequence 〈Fi,Ci〉i>0 is increasing (property 2 of
Proposition 4.31), then (TI : µ,x)∈Fk. By property 3 of Proposition 4.31, 〈Fk,Ck〉 ∈ P . Then
〈Fk+1,Ck+1〉= 〈Fk,Ck ∪{x' ε}〉. Thus x' ε ∈ C∞. Therefore the condition 6 of Definition
4.21 holds.

7 This case is similar to condition 14.
8 This case is similar to condition 14.
9 This case is similar to condition 14.
10 This case is similar to condition 14.
11 This case is similar to condition 14.
12 This case is similar to condition 14.
13 We suppose that (Tϕ→ψ : µ,x)∈ F∞. As P is saturated then 〈F∞∪{(Fϕ : µ,x)},C∞〉 ∈ P or
〈F∞∪{(Tψ : µ,x)},C∞〉 ∈ P , by rule 〈T→〉. By property 2 of Proposition 4.32, (Fϕ : µ,x) ∈
F∞ or (Tψ : µ,x) ∈ F∞. Therefore the condition 13 of Definition 4.21 holds.

14 We suppose that (Fϕ → ψ : µ,x) ∈ F∞. As P is saturated then 〈F∞ ∪ {(Tϕ : µ,x),(Fψ :
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µ,x)},C∞〉 ∈ P by rule 〈F →〉. As P is 4-closed then 〈F∞ ∪ {(Tϕ : µ,x)},C∞〉 ∈ P and
〈F∞∪{(Fψ : µ,x)},C∞〉 ∈ P . By property 2 of Proposition 4.32, (Tϕ : µ,x) ∈ F∞ and (Fψ :
µ,x) ∈ F∞. Therefore the condition 14 of Definition 4.21 holds.

15 We suppose that (Tϕ∗ψ : µ,x)∈F∞. By same arguments to that of condition 6, there is k ∈N
such that:

— Sk = (Tϕ∗ψ : µ,x)

— (Tϕ∗ψ : µ,x) ∈ Fk

— 〈Fk,Ck〉 ∈ P .

Then, by construction of the limit CSS, 〈Fk+1,Ck+1〉 = 〈Fk ∪{(Tϕ : µ,a),(Tψ : µ,b)},Ck ∪
{x ' ab}〉, where a = c2k+2 and b = c2k+3. Then x ' ab ∈ C∞, (Tϕ : µ,a) ∈ F∞ and (Tψ :
µ,b) ∈ F∞. Therefore the condition 15 of Definition 4.21 holds.

16 We suppose that (Fϕ ∗ψ : µ,x) ∈ F∞. Let y,z ∈ Lr such that x ' yz ∈ C∞. As P is saturated
then we have 〈F∞∪{(Fϕ : µ,y)},C∞〉 ∈ P or 〈F∞∪{(Fψ : µ,z)},C∞〉 ∈ P , by rule 〈F∗〉. By
property 2 of Proposition 4.32, (Fϕ : µ,y) ∈ F∞ or (Fψ : µ,z) ∈ F∞. Therefore the condition
16 of Definition 4.21 holds.

17 Similar to condition 16.
18 Similar to condition 15.
19 We suppose that (TKuϕ : µ,x) ∈ F∞. Let y ∈ Lr such that x Pµ

u y ∈ C∞. As P is saturated
then 〈F∞ ∪ {(Tϕ : µ,y)},C∞〉 ∈ P , by the rule 〈TKu〉. By property 2 of Proposition 4.32,
(Tϕ : µ,y) ∈ F∞. Therefore the condition 19 of Definition 4.21 holds.

20 We suppose that (FKuϕ : µ,x) ∈ F∞. By same arguments to that of condition 6, there is k ∈N
such that:

— Sk = (FKuϕ : µ,x)

— (FKuϕ : µ,x) ∈ Fk

— 〈Fk,Ck〉 ∈ P .

Then, by construction of the limit CSS, 〈Fk+1,Ck+1〉 = 〈Fk ∪{(Fϕ : µ,a)},Ck ∪{x Pµ
u a}〉,

where a = c2k+2. Then x Pµ
u a ∈ C∞ and (Fϕ : µ,a) ∈ F∞. Therefore the condition 20 of

Definition 4.21 holds.
21 Similar to condition 20.
22 Similar to condition 19.
23 We suppose that (T[ϕ]ψ : µ,x) ∈ F∞. As P is saturated then 〈F∞∪{(Fϕ : µ,x)},C∞〉 ∈ P or
〈F∞ ∪{(Tψ : µ⊕ JϕK,x)},C∞ ∪{.µ⊕ JϕK}〉 ∈ P , by the rule 〈T[·]〉. As P is 4-closed then
〈F∞ ∪ {(Fϕ : µ,x)},C∞〉 ∈ P or 〈F∞ ∪ {(Tψ : µ⊕ JϕK,x)},C∞〉 ∈ P . By Proposition 4.32,
(Fϕ : µ,y) ∈ F∞ or (Tψ : µ⊕ JϕK,x) ∈ F∞. Therefore the condition 23 of Definition 4.21
holds.

24 We suppose that (F[ϕ]ψ : µ,x) ∈ F∞. As P is saturated then 〈F∞ ∪ {(Tϕ : µ,x),(Fψ : µ⊕
JϕK,x)},C∞ ∪ {.µ⊕ JϕK}〉 ∈ P , by the rule 〈T[·]〉. As P is 4-closed then 〈F∞ ∪ {(Tϕ :
µ,x)},C∞〉 ∈ P and 〈F∞∪{(Fψ : µ⊕JϕK,x)},C∞〉 ∈ P . By Proposition 4.32, (Tϕ : µ,y)∈ F∞

and (Fψ : µ⊕ JϕK,x) ∈ F∞. Therefore the condition 24 of Definition 4.21 holds.
25 Similar to condition 24.
26 Similar to condition 23.
27 We suppose that xPJψ1;...;ψkK

u y ∈ C∞.



A Public Announcement Separation Logic 39

As P is saturated then 〈F∞∪{(Tψk : Jψ1; ...;ψk−1K,x),(Tψk : Jψ1; ...;ψk−1K,y)},C∞〉 ∈ P or
〈F∞ ∪{(Fψk : Jψ1; ...;ψk−1K,x),(Fψk : Jψ1; ...;ψk−1K,y)},C∞〉 ∈ P , by the rule 〈Rpop〉. As
P is 4-closed, and by Proposition 4.32, we have (Tψk : Jψ1; ...;ψk−1K,x) ∈ F∞ and (Tψk :
Jψ1; ...;ψk−1K,y) ∈ F∞, or (Fψk : Jψ1; ...;ψk−1K,x) ∈ F∞ and (Fψk : Jψ1; ...;ψk−1K,y) ∈ F∞.

28 We suppose that xPµ
u y ∈ C∞ and .µ⊕ JϕK ∈ C∞. As P is saturated then one of the following

conditions hold, by the rule 〈Rpush〉:

— 〈F∞,C∞∪{xPµ⊕JϕK
u y}〉 ∈ P . In this case, by Proposition 4.32, we have xPµ⊕JϕK

u y ∈ C∞.

— 〈F∞∪{(Tϕ : µ,x),(Fϕ : µ,y)},C∞〉 ∈ P . In this case, as P is4-closed and by Proposition
4.32, we have (Tϕ : µ,x) ∈ F∞ and (Fϕ : µ,y) ∈ F∞.

— 〈F∞∪{(Fϕ : µ,x),(Tϕ : µ,y)},C∞〉 ∈ P . In this case, as P is4-closed and by Proposition
4.32, we have (Fϕ : µ,x) ∈ F∞ and (Tϕ : µ,y) ∈ F∞.

Appendix G. Proof of Lemma 4.30

Definition G.1 (Consistency property). A consistency property is a set P of CSS satisfying the
following conditions for all CSS 〈F ,C 〉 ∈ P , all ϕ,ψ ∈ L , all u ∈ A, all µ ∈ LL and all x,y ∈ Lr:

1 (Tp : µ,x) 6∈ F or (Fp : κ,y) 6∈ F or x' y 6∈ C
2 (Tϕ : µ,x) 6∈ F or (Fϕ : µ,y) 6∈ F or x' y 6∈ C
3 (FI : µ,x) 6∈ F or x' ε 6∈ C
4 (F> : µ,x) 6∈ F
5 (T⊥ : µ,x) 6∈ F
6 If (TI : µ,x) ∈ F then 〈F ,C ∪{x' ε}〉 ∈ P
7 If (T¬ϕ : µ,x) ∈ F then 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P
8 If (F¬ϕ : µ,x) ∈ F then 〈F ∪{(Tϕ : µ,x)},C 〉 ∈ P
9 If (Tϕ∧ψ : µ,x) ∈ F then 〈F ∪{(Tϕ : µ,x),(Tψ : µ,x)},C 〉 ∈ P
10 If (Fϕ∧ψ : µ,x) ∈ F then 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P or 〈F ∪{(Fψ : µ,x)},C 〉 ∈ P
11 If (Tϕ∨ψ : µ,x) ∈ F then 〈F ∪{(Tϕ : µ,x)},C 〉 ∈ P or 〈F ∪{(Tψ : µ,x)},C 〉 ∈ P
12 If (Fϕ∨ψ : µ,x) ∈ F then 〈F ∪{(Fϕ : µ,x),(Fψ : µ,x)},C 〉 ∈ P
13 If (Tϕ→ ψ : µ,x) ∈ F then 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P or 〈F ∪{(Tψ : µ,x)},C 〉 ∈ P
14 If (Fϕ→ ψ : µ,x) ∈ F then 〈F ∪{(Tϕ : µ,x),(Fψ : µ,x)},C 〉 ∈ P
15 If (Tϕ∗ψ : µ,x)∈F then ∃ci,c j ∈ γr \Ar(C ), ci 6= c j and 〈F ∪{(Tϕ : µ,ci),(Tψ : µ,c j)},C ∪
{x' cic j}〉 ∈ P

16 If (Fϕ∗ψ : µ,x)∈ F then ∀y,z ∈ Lr, x' yz ∈ C ⇒ 〈F ∪{(Fµ : ϕ,y)},C 〉 ∈ P or 〈F ∪{(Fψ :
µ,z)},C 〉 ∈ P

17 If (Tϕ−∗ψ : µ,x)∈F then ∀y∈ Lr, xy' xy∈ C ⇒ 〈F ∪{(Fϕ : µ,y)},C 〉 ∈ P or 〈F ∪{(Tψ :
µ,xy)},C 〉 ∈ P

18 If (Fϕ−∗ψ : µ,x) ∈ F then ∃ci ∈ γr \Ar(C ), 〈F ∪ {(Tϕ : µ,ci),(Fψ : µ,xci)},C ∪ {xci '
xci}〉 ∈ P

19 If (TKuϕ : µ,x) ∈ F then ∀y ∈ Lr, xPµ
u y ∈ C ⇒ 〈F ∪{(Tϕ : µ,y)},C 〉 ∈ P

20 If (FKuϕ : µ,x) ∈ F then ∃ci ∈ γr \Ar(C ), 〈F ∪{(Fϕ : µ,ci)},C ∪{xPµ
u ci}〉 ∈ P

21 If (TK̃uϕ : µ,x) ∈ F then ∃ci ∈ γr \Ar(C ), 〈F ∪{(Tϕ : µ,ci)},C ∪{xPµ
u ci}〉 ∈ P

22 If (FK̃uϕ : µ,x) ∈ F then ∀y ∈ Lr, xPµ
u y ∈ C ⇒ 〈F ∪{(Fϕ : µ,y)},C 〉 ∈ P
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23 If (T[ϕ]ψ : µ,x) ∈ F then 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P or 〈F ∪{(Tψ : µ⊕ JϕK,x)},C ∪{.µ⊕
JϕK}〉 ∈ P

24 If (F[ϕ]ψ : µ,x) ∈ F then 〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P
25 If (T〈ϕ〉ψ : µ,x) ∈ F then 〈F ∪{(Tϕ : µ,x),(Tψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P
26 If (F〈ϕ〉ψ : µ,x) ∈ F then 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P or 〈F ∪{(Fψ : µ⊕ JϕK,x)},C ∪{.µ⊕

JϕK}〉 ∈ P
27 If xPJψ1;...;ψkK

u y ∈ C then one of the following conditions hold:

— 〈F ∪{(Tψk : Jψ1; ...;ψk−1K,x),(Tψk : Jψ1; ...;ψk−1K,y)},C 〉 ∈ P
— 〈F ∪{(Fψk : Jψ1; ...;ψk−1K,x),(Fψk : Jψ1; ...;ψk−1K,y)},C 〉 ∈ P

28 If xPµ
u y ∈ C and .µ⊕ JϕK ∈ C then one of the following conditions hold:

— 〈F ,C ∪{xPµ⊕JϕK
u y}〉 ∈ P

— 〈F ∪{(Tϕ : µ,x),(Fϕ : µ,y)},C 〉 ∈ P
— 〈F ∪{(Fϕ : µ,x),(Tϕ : µ,y)},C 〉 ∈ P

Conditions 1, 2, 3, 4 and 5 correspond to conditions that ensure that the CSS are not closed.
Other conditions ensure that if we apply a rule of Fig. 7 then one of the new CSS belongs to P .
We can remark that all new CSS satisfy the condition (Pcss) of Definition 4.12.

Definition G.2 (Alternate consistency property). An alternate consistency property is a set P
of CSS satisfying the conditions of consistency property, except conditions 15, 18, 20 and 21
which are respectively replaced by 15’, 18’, 20’ and 21’.

15’.If (Tϕ ∗ψ : µ,x) ∈ F then ∀ci 6= c j ∈ γr \Ar(C ), 〈F ∪{(Tϕ : µ,ci),(Tψ : µ,c j)},C ∪{x '
cic j}〉 ∈ P

18’.If (Fϕ−∗ψ : µ,x) ∈ F then ∀ci ∈ γr \Ar(C ), 〈F ∪ {(Tϕ : µ,ci),(Fψ : µ,xci)},C ∪ {xci '
xci}〉 ∈ P

20’.If (FKuϕ : µ,x) ∈ F then ∀ci ∈ γr \Ar(C ), 〈F ∪{(Fϕ : µ,ci)},C ∪{xPµ
u ci}〉 ∈ P

21’.If (TK̃uϕ : µ,x) ∈ F then ∀ci ∈ γr \Ar(C ), 〈F ∪{(Tϕ : µ,ci)},C ∪{xPµ
u ci}〉 ∈ P

Proposition G.3. The set of every finite CSS for which there exists no closed tableau is a con-
sistency property.

Proof. Let P the set of finite CSS for which there exists no closed tableau. We show that P is
a consistency property. Let 〈F ,C 〉 ∈ P .

— If (Tp : µ,x) ∈ F and (Fp : κ,y) ∈ F and x ' y ∈ C then 〈F ,C 〉 is closed. But this is
contradictory, because there is no closed tableau for this CSS.

— If (TKuϕ : µ,x)∈F . Let y∈ Lr such that xPµ
u y∈ C . We suppose that 〈F ∪{(Tϕ : µ,y)},C 〉 6∈

P . By the rule 〈TKu〉, [〈F ∪{(Tϕ : µ,y)},C 〉] is a finite tableau for 〈F ,C 〉. Then 〈F ,C 〉 has
a closed tableau, which is contradictory. Hence 〈F ∪{(Tϕ : µ,y)},C 〉 ∈ P .

— If (FKuϕ : µ,x)∈F . We choose ci ∈ γr \Ar(C ) (remember that γr is infinite and Ar(C ) is finite
because C is finite, by hypothesis). We suppose that 〈F ∪{(Fϕ : µ,ci)},C ∪{xPµ

u ci}〉 6∈ P .
By the rule 〈FKu〉, [〈F ∪{(Fϕ : µ,ci)},C ∪{x Pµ

u ci}〉] is a finite tableau for 〈F ,C 〉. Thus
〈F ,C 〉 has a closed tableau, which is contradictory. Hence 〈F ∪ {(Fϕ : µ,ci)},C ∪ {x Pµ

u

ci}〉 ∈ P .
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— If (T[ϕ]ψ : µ,x) ∈ F . We suppose that 〈F ∪ {(Fϕ : µ,x)},C 〉 6∈ P and 〈F ∪ {(Tψ : µ⊕
JϕK,x)},C ∪{.µ⊕ JϕK}〉 6∈ P . By the rule 〈T[·]〉, [〈F ∪{(Fϕ : µ,x)},C 〉;〈F ∪{(Tψ : µ⊕
JϕK,x)},C ∪{.µ⊕ JϕK}〉] is a finite tableau for 〈F ,C 〉. Thus 〈F ,C 〉 has a closed tableau,
which is contradictory. Hence 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P or 〈F ∪{(Tψ : µ⊕ JϕK,x)},C ∪
{.µ⊕ JϕK}〉 ∈ P .

— If (F[ϕ]ψ : µ,x)∈F . We suppose that 〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕JϕK,x)},C ∪{.µ⊕JϕK}〉 6∈
P . By the rule 〈F[·]〉, [〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕JϕK,x)},C ∪{.µ⊕JϕK}〉] is a finite tableau
for 〈F ,C 〉. Thus 〈F ,C 〉 has a closed tableau, which is contradictory. Hence 〈F ∪ {(Tϕ :
µ,x),(Fψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P .

— Other cases are proved similarly.

In conclusion, P is a consistency property.

Proposition G.4. Any consistency property can be extended into a 4-closed consistency prop-
erty.

Proof. Let P be a consistency property. Let P4 its 4-closure defined by:

〈F ,C 〉 ∈ P4 iff 〈F ,C 〉4 〈F ′,C ′〉 for some 〈F ′,C ′〉 ∈ P

We have P ⊆ P4 because 4 is reflexive. P4 is 4-closed because 4 is transitive. We show now
that P4 is a consistency property.
Let 〈F ,C 〉 ∈ P4. Then there exists 〈F ′,C ′〉 ∈ P such that 〈F ,C 〉4 〈F ′,C ′〉.

— We suppose that (Tp : µ,x)∈ F and (Fp : κ,y)∈ F and x' y∈ C . Then (Tp : µ,x)∈ F ′ and
(Fp : κ,y) ∈ F ′ and x' y ∈ C ′ because 〈F ,C 〉4 〈F ′,C ′〉. But this is contradictory because
〈F ′,C ′〉 ∈ P and P satisfies condition 1 of Definition ??.

— We suppose that (TKuϕ : µ,x)∈F . Let y∈ Lr such that xPµ
u y∈C . As 〈F ,C 〉4 〈F ′,C ′〉 then

(TKuϕ : µ,x)∈ F ′ and xPµ
u y∈ C ′. Thus 〈F ′∪{(Tϕ : µ,y)},C ′〉 ∈ P . Moreover 〈F ∪{(Tϕ :

µ,y)},C 〉4 〈F ′∪{(Tϕ : µ,y)},C ′〉. Hence 〈F ∪{(Tϕ : µ,y)},C 〉 ∈ P4.
— We suppose that (FKuϕ : µ,x) ∈ F . As 〈F ,C 〉 4 〈F ′,C ′〉 then (FKuϕ : µ,x) ∈ F ′. Thus

there is ci ∈ γr \Ar(C ′) such that 〈F ′ ∪{(Fϕ : µ,ci)},C ′ ∪{x Pµ
u ci}〉 ∈ P . As C ⊆ C ′ then

Ar(C ) ⊆ Ar(C ′). Then γr \Ar(C ′) ⊆ γr \Ar(C ). Hence ci ∈ γr \Ar(C ). Moreover 〈F ∪
{(Fϕ : µ,ci)},C ∪{x Pµ

u ci}〉 4 〈F ′ ∪{(Fϕ : µ,ci)},C ′ ∪{x Pµ
u ci}〉. Therefore 〈F ∪{(Fϕ :

µ,ci)},C ∪{xPµ
u ci}〉 ∈ P4.

— We suppose that (T[ϕ]ψ : µ,x) ∈ F . As 〈F ,C 〉 4 〈F ′,C ′〉 then (T[ϕ]ψ : µ,x) ∈ F ′. Thus
〈F ′ ∪{(Fϕ : µ,x)},C ′〉 ∈ P or 〈F ′ ∪{(Tψ : µ⊕ JϕK,x)},C ′ ∪{.µ⊕ JϕK}〉 ∈ P . Moreover
〈F ∪ {(Fϕ : µ,x)},C 〉 4 〈F ′ ∪ {(Fϕ : µ,x),C ′〉 and 〈F ∪ {(Tψ : µ⊕ JϕK,x)},C ∪ {.µ⊕
JϕK}〉4 〈F ′∪{(Tψ : µ⊕ JϕK,x)},C ′∪{.µ⊕ JϕK}〉. Therefore 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P4

or 〈F ∪{(Tψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P4.
— We suppose that (F[ϕ]ψ : µ,x)∈F . As 〈F ,C 〉4 〈F ′,C ′〉 then (F[ϕ]ψ : µ,x)∈F ′. Thus 〈F ′∪
{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},C ′∪{.µ⊕ JϕK}〉 ∈ P . Moreover 〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕
JϕK,x)},C ∪{.µ⊕JϕK}〉4 〈F ′∪{(Tϕ : µ,x),(Fψ : µ⊕JϕK,x)},C ′∪{.µ⊕JϕK}〉. Therefore
〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P4.

— Other cases are proved similarly.
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Definition G.5 (Substitution). A substitution is a function σ : γr ∪{ε} −→ γr ∪{ε}, such that
σ(ε) = ε.

We extend this definition to resource labels as follows: if ci1 , . . . ,cik ∈ γr then σ(ci1 . . .cik) =

σ(ci1) . . .σ(cik).
We extend it to labelled formulae and constraints as follows:

— For any labelled formula (Sϕ : µ,x), σ(Sϕ : µ,x) = (Sϕ : µ,σ(x))
— For any resource constraint x' y, σ(x' y) = σ(x)' σ(y)
— For any agent constraint xPµ

u y, σ(xPµ
u y) = σ(x)Pµ

u σ(y)
— For any announcement constraint .µ, σ(.µ) = .µ

We extend it to labelled formulae sets and constraint sets as follows:

— For any set of labelled formulae F , σ(F ) = {(Sϕ : µ,σ(x)) | (Sϕ : µ,x) ∈ F }
— For any set of constraints C , σ(C ) = {σ(x) ' σ(y) | x ' y ∈ C}∪{σ(x) Pµ

u σ(y) | x Pµ
u y ∈

C}∪{.µ | .µ ∈ C}

Lemma G.6. Let σ be a substitution and let C be a set of constraints. We have σ(C )⊆ σ(C )

Proof. Let C † defined by:

— x' y ∈ C † iff σ(x)' σ(y) ∈ σ(C )

— xPµ
u y ∈ C † iff σ(x)Pµ

u σ(y) ∈ σ(C )

— .µ ∈ C † iff .µ ∈ σ(C )

We show that C † ⊆ C †. Let c ∈ C † a constraint. We show that c ∈ C †. There are two cases. The
first case is: c ∈ C † because c ∈ C †: in this case, we have obviously c ∈ C †. The second case is:
c is obtained by rules of Fig. 6. We prove that c ∈ C † by induction on the size n of the deduction
tree of c.

— Base case (n = 0):
In this case, the deduction tree is of the form 〈ε〉

ε' ε and c is the constraint ε' ε. By rule
〈ε〉, ε ' ε ∈ σ(C ). As σ(ε) = ε then σ(ε) ' σ(ε) ∈ σ(C ). By definition of C †, ε ' ε ∈ C †.
Then, c ∈ C †.

— Inductive step:
We suppose that any constraint of C † having a deduction tree such that its size is lower or
equal to n (IH) belongs to C †. We show that c ∈ C † for any constraint c ∈ C † such that the
deduction tree size of c is equal to n+1.

– Case 〈cr〉:

The deduction tree is of the form
...

x' y

...
yk ' yk

〈cr〉
xk ' yk

and c is the constraint xk '

yk. By (IH), we have x ' y ∈ C † and yk ' yk ∈ C †. By definition, σ(x) ' σ(y) ∈ σ(C )

and σ(yk) ' σ(yk) ∈ σ(C ). By definition, σ(y)σ(k) ' σ(y)σ(k) ∈ σ(C ). By rule 〈cr〉,
σ(x)σ(k)' σ(y)σ(k) ∈ σ(C ). Thus σ(xk)' σ(yk) ∈ σ(C ). Hence xk ' yk ∈ C †.

– Case 〈kr〉:

The deduction tree is of the form

...
xPµ

u y
〈kr〉x' x

and c is the constraint x ' x. By (IH), we
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have xPµ
u y ∈ C †. By definition, σ(x)Pµ

u σ(y) ∈ σ(C ). By rule 〈kr〉, σ(x)' σ(x) ∈ σ(C ).
Hence x' x ∈ C †.

– Case 〈an〉:

The deduction tree is of the form

...
xPµ

u y
〈an〉.µ

and c is the constraint .µ. By (IH), we

have x Pµ
u y ∈ C †. By definition, σ(x) Pµ

u σ(y) ∈ σ(C ). By rule 〈an〉, .µ ∈ σ(C ). Hence
.µ ∈ C †.

– Other cases are proved similarly.

Thus C † ⊆ C †. By definition, σ(C ) ⊆ σ(C ). Let c ∈ C . We have σ(c) ∈ σ(C ). Then σ(c) ∈
σ(C ) and c ∈ C †, by definition of C †. Therefore C ⊆ C † and we have also C ⊆ C †. As C † ⊆ C †,
we have C ⊆ C †. Now, let c′ ∈ σ(C ). There are three cases:

— Case c′ = x' y ∈ σ(C ):
Then there is m' n ∈ C such that x = σ(m) and y = σ(n). As C ⊆ C † then m' n ∈ C †. Thus
σ(m)' σ(n) ∈ σ(C ) and we have c′ ∈ σ(C ).

— Case c′ = xPµ
u y ∈ σ(C ):

Then there is m Pµ
u n ∈ C such that x = σ(m) and y = σ(n). As C ⊆ C † then m Pµ

u n ∈ C †.
Thus σ(m)Pµ

u σ(n) ∈ σ(C ) and we have c′ ∈ σ(C ).
— Case c′ = .µ ∈ σ(C ):

Then .µ ∈ C . As C ⊆ C † then .µ ∈ C †. Thus .µ ∈ σ(C ) and we have c′ ∈ σ(C ).

Therefore σ(C )⊆ σ(C ).

Corollary G.7. Let σ be a substitution and C be a set of constraints. If c ∈ C then σ(c) ∈ σ(C ).

Proof. Let c ∈ C . By definition, σ(c) ∈ σ(C ). By Lemma G.6, we have σ(C ) ⊆ σ(C ). Thus
σ(c) ∈ σ(C ).

Proposition G.8. Let σ be a substitution. The following properties hold:

1 If 〈F ,C 〉 is a CSS then 〈σ(F ),σ(C )〉 is a CSS
2 If 〈F f ,C f 〉 is a finite CSS then 〈σ(F f ),σ(C f )〉 is a finite CSS.
3 If 〈F ,C 〉4 〈F ′,C ′〉 then 〈σ(F ),σ(C )〉4 〈σ(F ′),σ(C ′)〉.

Proof. Let σ be a substitution.

1 We suppose that 〈F ,C 〉 is a CSS. We have to show that 〈σ(F ),σ(C )〉 satisfies the property
(Pcss) of Definition 4.12. Let (Sϕ : µ,x) ∈ σ(F ). By definition, there exists (Sϕ : µ,x′) ∈ F
such that x = σ(x′). As 〈F ,C 〉 is a CSS then, by (Pcss) and Proposition 4.9, x′ ' x′ ∈ C and
.µ ∈ C . By Corollary G.7, σ(x′) ' σ(x′) ∈ σ(C ) and .µ ∈ σ(C ). Thus x ' x ∈ σ(C ) and
.µ ∈ σ(C ). Therefore (Pcss) holds and 〈σ(F ),σ(C )〉 is a CSS.

2 Let 〈F f ,C f 〉 be a finite CSS. By previous property, 〈σ(F f ),σ(C f )〉 is a CSS. We show now
that 〈σ(F f ),σ(C f )〉 is finite. As σ is surjective ans as F f is finite then σ(F f ) is finite. The
proof for σ(C f ) is similar. Thus 〈σ(F f ),σ(C f )〉 is a finite CSS.

3 Let 〈F ,C 〉 and 〈F ′,C ′〉 be two CSS such that 〈F ,C 〉4 〈F ′,C ′〉. Let (Sϕ : µ,x) ∈ σ(F ). We
show that (Sϕ : µ,x) ∈ σ(F ′). There are m ∈ Lr such that x = σ(m) and (Sϕ : µ,m) ∈ F . As
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〈F ,C 〉 4 〈F ′,C ′〉 then (Sϕ : µ,m) ∈ F ′. Then (Sϕ : µ,x) ∈ σ(F ′). Hence σ(F ) ⊆ σ(F ′).
The proof for σ(C )⊆σ(C ′) is similar. We can conclude that 〈σ(F ),σ(C )〉4 〈σ(F ′),σ(C ′)〉.

Proposition G.9. Let σ be a substitution, the following properties hold:

— σ(F )∪{(Sϕ : µ,σ(x))}= σ(F ∪{(Sϕ : µ,x)})
— σ(C )∪{σ(x)' σ(y)}= σ(C ∪{x' y})
— σ(C )∪{σ(x)Pµ

u σ(y)}= σ(C ∪{xPµ
u y})

— σ(C )∪{.µ}= σ(C ∪{.µ})

Proof. This proof is left to the reader.

Proposition G.10. Any4-closed consistency property can be extended into a4-closed alternate
consistency property.

Proof. Let P be a 4-closed consistency property. Let P+ defined by:

〈F ,C 〉 ∈ P+ iff 〈σ(F ),σ(C )〉 ∈ P

for a substitution σ : γr ∪{ε} −→ γr ∪{ε}.
We remark that P ⊆ P+ (by considering the identity substitution).
We show that P+ is4-closed. Let 〈F ,C 〉 ∈P+ and 〈F ′,C ′〉4 〈F ,C 〉. As 〈F ,C 〉 ∈P+, there is a
substitution σ such that 〈σ(F ),σ(C )〉 ∈ P . By Proposition G.8, 〈σ(F ′),σ(C ′)〉4 〈σ(F ),σ(C )〉.
As P is 4-closed then 〈σ(F ′),σ(C ′)〉 ∈ P . Thus 〈F ′,C ′〉 ∈ P+.
We show now that P+ is an alternate consistency property. Let 〈F ,C 〉 ∈ P+. By definition, there
exists a substitution σ such that 〈σ(F ),σ(C )〉 ∈ P .

— We suppose that (Tp : µ,x) ∈ F and (Fp : κ,y) ∈ F and x' y ∈ C . By definition and Corol-
lary G.7, (Tp : µ,σ(x)) ∈ σ(F ) and (Fp : κ,σ(y)) ∈ σ(F ) and σ(x) ' σ(y) ∈ σ(C ). It is
contradictory because P is a consistency property.

— We suppose that (TKuϕ : µ,x) ∈ F . Then (TKuϕ : µ,σ(x)) ∈ σ(F ). Let y ∈ Lr such that
xPµ

u y∈C . By Corollary G.7, σ(xPµ
u y)∈σ(C ). By definition of substitution, σ(x)Pµ

u σ(y)∈
σ(C ). Moreover as P is a consistency property then 〈σ(F )∪{(Tϕ : µ,σ(y))},σ(C )〉 ∈ P . By
Proposition G.9, 〈σ(F ∪{(Tϕ : µ,y)}),σ(C )〉 ∈ P . Hence 〈F ∪{(Tϕ : µ,y)},C 〉 ∈ P+.

— We suppose that (FKuϕ : µ,x) ∈ F . Then (FKuϕ : µ,σ(x)) ∈ σ(F ). Let ci ∈ γr \Ar(C ). As
P is a consistency property then there exists c′ ∈ γr \Ar(σ(C )) such that 〈σ(F )∪ {(Fϕ :
µ,c′)},σ(C )∪{xPµ

u c′}〉 ∈ P . Let σ′ = σ[ci 7→ c′]. As ci 6∈ Ar(C ) then σ(C ) = σ′(C ). More-
over, by Proposition 4.10, ci 6∈ Ar(C ). Then, by property (Pcss), ci does not occur in F .
Thus σ(F ) = σ′(F ) and σ(x) = σ′(x). Then 〈σ′(F )∪{(Fϕ : µ,σ′(ci))},σ′(C )∪{σ′(x) Pµ

u

σ′(ci)}〉 ∈ P . By Proposition G.9, 〈σ′(F ∪ {(Fϕ : µ,ci)}),σ′(C ∪ {x Pµ
u ci})〉 ∈ P . Hence

〈F ∪{(Fϕ : µ,ci)},C ∪{xPµ
u ci}〉 ∈ P+.

— We suppose that (T[ϕ]ψ : µ,x) ∈ F . Then, (T[ϕ]ψ : µ,σ(x)) ∈ σ(F ). As P is a consistency
property then 〈σ(F )∪{(Fϕ : µ,σ(x))},σ(C )〉 ∈P or 〈σ(F )∪{(Tψ : µ⊕JϕK,σ(x))},σ(C )∪
{.µ⊕ JϕK}〉 ∈ P . By Proposition G.9, 〈σ(F ∪{(Fϕ : µ,x)}),σ(C )〉 ∈ P or 〈σ(F ∪{(Tψ :
µ⊕ JϕK,x)}),σ(C ∪{.µ⊕ JϕK})〉 ∈ P . Hence 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P+ or 〈F ∪{(Tψ :
µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P+.
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— We suppose that (F[ϕ]ψ : µ,x)∈F . By definition, (F[ϕ]ψ : µ,σ(x))∈ σ(F ). As P is a consis-
tency property then 〈σ(F )∪{(Tϕ : µ,σ(x)),(Fψ : µ⊕ JϕK,σ(x))},σ(C )∪{.µ⊕ JϕK}〉 ∈ P .
By Proposition G.9, 〈σ(F ∪{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)}),σ(C ∪{.µ⊕ JϕK})〉 ∈ P . Hence
〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P+.

— Other cases are proved similarly.

Proposition G.11. Any4-closed alternate consistency property can be extended into a4-closed
alternate consistency property of finite character.

Proof. Let P be a 4-closed alternate consistency property. Let P f c defined by:

〈F ,C 〉 ∈ P f c iff 〈F f ,C f 〉 ∈ P for all 〈F f ,C f 〉4 f 〈F ,C 〉

We show that P ⊆ P f c. Let 〈F ,C 〉 ∈ P . As P is 4-closed then P is 4 f -closed. Thus, for any
〈F f ,C f 〉4 f 〈F ,C 〉, we have 〈F f ,C f 〉 ∈ P . Then 〈F ,C 〉 ∈ P f c by definition.
We show that P f c is4-closed. Let 〈F ,C 〉 ∈P f c. Let 〈F ′,C ′〉4 〈F ,C 〉. We show that 〈F ′,C ′〉 ∈
P f c. Let 〈F ′f ,C ′ f 〉4 f 〈F ′,C ′〉. Then 〈F ′f ,C ′f 〉4 f 〈F ,C 〉. Thus, we have 〈F ′f ,C ′f 〉 ∈ P , by defi-
nition. Hence 〈F ′,C ′〉 ∈ P f c by definition.
We show that P f c is of finite character. Let 〈F ,C 〉 be a CSS. We suppose that for all 〈F f ,C f 〉4 f

〈F ,C 〉, 〈F f ,C f 〉 ∈ P f c holds. We show that 〈F ,C 〉 ∈ P f c. By definition, for all 〈F ′f ,C ′f 〉 4 f

〈F f ,C f 〉 we have 〈F ′f ,C ′f 〉 ∈ P . In particular, as 〈F f ,C f 〉4 f 〈F f ,C f 〉 then 〈F f ,C f 〉 ∈ P . There-
fore, we have 〈F ,C 〉 ∈ P f c.
We now show that P f c is an alternate consistency property. Let 〈F ,C 〉 ∈ P f c.

— We suppose that (Tp : µ,x)∈ F and (Fp : κ,y)∈ F and x' y∈ C . By compactness (Lemma
4.11), there exists C f ⊆ C such that C f is finite and x ' y ∈ C f . Then 〈{(Tp : µ,x),(Fp :
κ,y)},C f 〉 is a CSS (satisfies the property (Pcss)) and we remark that 〈{(Tp : µ,x),(Fp :
κ,y)},C f 〉4 f 〈F ,C 〉. Thus, by definition 〈{(Tp : µ,x),(Fp : κ,y)},C f 〉 ∈ P . But this is con-
tradictory because P is an alternate consistency property.

— We suppose that (TKuϕ : µ,x) ∈ F . Let y ∈ Lr such that x Pµ
u y ∈ C . We suppose that 〈F ∪

{(Tϕ : µ,y)},C 〉 6∈ P f c. Thus, by definition of P f c, there exists 〈F f ,C f 〉 4 f 〈F ∪ {(Tϕ :
µ,y)},C 〉 such that 〈F f ,C f 〉 6∈ P . By compactness there exists a finite C1 ⊆ C such that
xPµ

u y ∈ C1. Let F ′f = F f \{(Tϕ : µ,y)}∪{(TKuϕ : µ,x)}. Let C ′f = C f ∪C1. Then 〈F ′f ,C ′f 〉
is a finite CSS and 〈F ′f ,C ′f 〉4 f 〈F ,C 〉. Thus, by definition of P f c, 〈F ′f ,C ′f 〉 ∈ P . As (TKuϕ :
µ,x) ∈ F ′f , x Pµ

u y ∈ C ′f and as P is an alternate consistency property then 〈F ′f ∪ {(Tϕ :
µ,y)},C ′f 〉 ∈ P . We can remark that 〈F f ,C f 〉 4 〈F ′f ∪{(Tϕ : µ,y)},C ′f 〉 holds. As P is 4-
closed then 〈F f ,C f 〉 ∈ P . But, this is contradictory. Therefore 〈F ∪{(Tϕ : µ,y)},C 〉 ∈ P f c.

— We suppose that (FKuϕ : µ,x)∈ F . Let ci ∈ γr \Ar(C ). We show that 〈F ∪{(Fϕ : µ,ci)},C ∪
{x Pµ

u ci}〉 ∈ P f c. Let 〈F f ,C f 〉4 f 〈F ∪{(Fϕ : µ,ci)},C ∪{x Pµ
u ci}〉. Let F ′f = F f \{(Fϕ :

µ,ci)}∪{(FKuϕ : µ,x)}. As 〈F ,C 〉 is a CSS and F ′f ⊆ F then 〈F ′f ,C 〉 is a CSS. By Propo-
sition 4.13, there exists C1 ⊆ C such that C1 is finite and 〈F ′f ,C1〉 is a CSS. Let C ′f =

C f \ {x Pµ
u ci}∪C1. Then 〈F ′f ,C ′f 〉 is a finite CSS and 〈F ′f ,C ′f 〉 4 f 〈F ,C 〉. Thus, by defi-

nition, 〈F ′f ,C ′f 〉 ∈ P . Also, as C ′f ⊆ C then Ar(C ′f )⊆Ar(C ). As P is an alternate consistency
property, as (FKuϕ : µ,x) ∈ F ′f and as ci ∈ γr \Ar(C ′f ) then 〈F ′f ∪{(Fϕ : µ,ci)},C ′f ∪{x P

µ
u

ci}〉 ∈ P . As P is 4-closed and as 〈F f ,C f 〉 4 〈F ′f ∪ {(Fϕ : ci,}),C ′f ∪ {x P
µ
u ci}〉 then
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〈F f ,C f 〉 ∈ P . This being true for any 〈F f ,C f 〉 4 f 〈F ∪{(Fϕ : µ,ci)},C ∪{x Pµ
u ci}〉, then

〈F ∪{(Fϕ : µ,ci)},C ∪{xPµ
u ci}〉 ∈ P f c.

— We suppose that (T[ϕ]ψ : µ,x) ∈ F . We suppose that 〈F ∪{(Fϕ : µ,x)},C 〉 6∈ P f c and 〈F ∪
{(Tψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 6∈ P f c. By definition of P f c, there exist 〈F A

f ,C A
f 〉 4 f

〈F ∪{(Fϕ : µ,x)},C 〉 and 〈F B
f ,C B

f 〉4 f 〈F ∪{(Tψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 such that
〈F A

f ,C A
f 〉 6∈ P and 〈F B

f ,C B
f 〉 6∈ P . Let F ′f = F A

f \ {(Fϕ : µ,x)}∪F B
f \ {(Tψ : µ⊕ JϕK,x)}∪

{(T[ϕ]ψ : µ,x)}. As 〈F ,C 〉 is a CSS and F ′f ⊆F then 〈F ′f ,C 〉 is a CSS. By Proposition 4.13,
there exists C1 ⊆ C such that C1 is finite and 〈F ′f ,C1〉 is a CSS. Let C ′f = C A

f ∪C B
f \ {.µ⊕

JϕK}∪C1. Then 〈F ′f ,C ′f 〉 is a finite CSS and 〈F ′f ,C ′f 〉4 f 〈F ,C 〉. Thus, by definition of P f c,
〈F ′f ,C ′f 〉 ∈ P . As (T[ϕ]ψ : µ,x)∈ F ′f and as P is an alternate consistency property then 〈F ′f ∪
{(Fϕ : µ,x)},C ′f 〉 ∈ P or 〈F ′f ∪{(Tψ : µ⊕JϕK,x)},C ′f ∪{.µ⊕JϕK}〉 ∈ P . We can remark that
〈F A

f ,C A
f 〉 4 〈F ′f ∪{(Fϕ : µ,x)},C ′f 〉 and 〈F B

f ,C B
f 〉 4 〈F ′f ∪{(Tψ : µ⊕ JϕK,x)},C ′f ∪{.µ⊕

JϕK}〉 hold. As P is4-closed then 〈F A
f ,C A

f 〉 ∈P and 〈F B
f ,C B

f 〉 ∈P . But, this is contradictory.
Therefore 〈F ∪{(Fϕ : µ,x)},C 〉 ∈ P f c or 〈F ∪{(Tψ : µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P f c.

— We suppose that (F[ϕ]ψ : µ,x)∈F . We suppose that 〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕JϕK,x)},C ∪
{.µ⊕ JϕK}〉 6∈ P f c. By definition of P f c, there exists 〈F f ,C f 〉 4 f 〈F ∪{(Tϕ : µ,x),(Fψ :
µ⊕ JϕK,x)},C ∪{.µ⊕ JϕK}〉 such that 〈F f ,C f 〉 6∈ P . Let F ′f = F f \ {(Tϕ : µ,x),(Fψ : µ⊕
JϕK,x)} ∪ {(F[ϕ]ψ : µ,x)}. As 〈F ,C 〉 is a CSS and F ′f ⊆ F then 〈F ′f ,C 〉 is a CSS. By
Proposition 4.13, there exists C1 ⊆ C such that C1 is finite and 〈F ′f ,C1〉 is a CSS. Let C ′f =
C f \ {.µ⊕ JϕK}∪C1. Then 〈F ′f ,C ′f 〉 is a finite CSS and 〈F ′f ,C ′f 〉 4 f 〈F ,C 〉. Thus, by def-
inition of P f c, 〈F ′f ,C ′f 〉 ∈ P . As (F[ϕ]ψ : µ,x) ∈ F ′f and as P is an alternate consistency
property then 〈F ′f ∪{(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},C ′f ∪{.µ⊕ JϕK}〉 ∈ P . We can remark
that 〈F f ,C f 〉 4 〈F ′f ∪ {(Tϕ : µ,x),(Fψ : µ⊕ JϕK,x)},C ′f ∪ {.µ⊕ JϕK}〉 holds. As P is 4-
closed then 〈F f ,C f 〉 ∈ P . But, this is contradictory. Therefore 〈F ∪{(Tϕ : µ,x),(Fψ : µ⊕
JϕK,x)},C ∪{.µ⊕ JϕK}〉 ∈ P f c.

— Other cases are proved similarly.

Lemma 4.30. There exists an oracle which contains every finite CSS for which there exists no
closed tableau.

Proof. We consider the set of the finite CSS for which there is no closed tableau. By Proposi-
tion G.3, this set is a consistency property. By Proposition G.4, we can extend it into a 4-close
consistency property. By Proposition G.10, we can extend it into a 4-close alternate consistency
property. Finally, by Proposition G.11, we can extend it into a 4-close alternate consistency
property of finite character. By conditions 6 to 28 of the alternate consistency property, this set is
saturated. And by conditions 1 to 5 this is a set of non closed CSS. Then this set is an oracle. As
this set is an extension of every finite CSS for which there is no closed tableau, we can conclude
that there exists an oracle which contains every finite CSS for which there is no closed tableau.


