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Abstract We define a family of intuitionistic non-normal modal logics; they
can bee seen as intuitionistic counterparts of classical ones. We first consider
monomodal logics, which contain only Necessity or Possibility. We then con-
sider the more important case of bimodal logics, which contain both modal
operators. In this case we define several interactions between Necessity and
Possibility of increasing strength, although weaker than duality. We thereby
obtain a lattice of 24 distinct bimodal logics. For all logics we provide both
a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also
prove their decidability. We then define a semantic characterisation of our log-
ics in terms of neighbourhood models containing two distinct neighbourhood
functions corresponding to the two modalities. Our semantic framework cap-
tures modularly not only our systems but also already known intuitionistic
non-normal modal logics such as Constructive K (CK) and the propositional
fragment of Wijesekera’s Constructive Concurrent Dynamic Logic.
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1 Introduction

Both intuitionistic modal logic and non-normal modal logic have been studied
for a long time. The study of modalities with an intuitionistic basis goes back to
Fitch in the late 40s [12] and has led to an important stream of research. We
can very schematically identify two traditions: so-called intuitionistic modal
logics versus constructive modal logics. Intuitionistic modal logics have been
systematised by Simpson [38], whose main goal is to define an analogous of
classical modalities justified from an intuitionistic point of view. On the other
hand, constructive modal logics are mainly motivated by their applications to
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computer science, such as the type-theoretic interpretations (Curry–Howard
correspondence, typed lambda calculi), verification and knowledge represen-
tation1, but also by their mathematical semantics (Goldblatt [17]).

On the other hand, non-normal modal logics have been strongly motivated
on a philosophical and epistemic ground. They are called “non-normal” as they
do not satisfy all the axioms and rules of the minimal normal modal logic K.
They have been studied since the seminal works of Scott, Montague, Lemmon,
and Chellas ([37], [35], [6], see Pacuit [36] for a survey), and can be seen as
generalisations of standard modal logics. They have found an interest in sev-
eral areas such as epistemic and deontic reasoning, reasoning about games,
and reasoning about probabilistic notions such as “truth in most of the cases”
(for the latter interpretation see e.g. Askounis et al. [3]). While the semantics
of these logics has been widely investigated in the seminal works mentioned
above, recently proof systems for these logics have been proposed in Lavend-
homme and Lucas [26], Gilbert and Maffezioli [16], Negri [28], Dalmonte et
al. [8], and Lellmann and Pimentel [27].

Although the two areas have grown up seemingly without any interac-
tion, it can be noticed that some intuitionistic or constructive modal logics
investigated in the literature contain non-normal modalities. The prominent
example is the Constructive Concurrent Dynamic Logic (CCDL) proposed by
Wijesekera [42], whose propositional fragment (that we call CCDLp) has been
recently investigated by Kojima [24]. This logic has a normal 2 modality and
a non-normal 3 modality, where 3 does not distribute over the ∨, that is

(C3) 3(A ∨B) ⊃ 3A ∨3B

is not valid. The original motivation by Wijesekera comes from Constructive
Concurrent Dynamic Logic, but the logic has also an interesting epistemic
interpretation in terms of internal/external observers proposed by Kojima. A
related system is Constructive K (CK), that has been proposed by Bellin et
al. [4] and further investigated by Mendler and de Paiva [33], Mendler and
Scheele [34]. This system not only rejects C3, but also its nullary version
3⊥ ⊃ ⊥ (N3). In contrast all these systems consider a normal interpretation
of 2 so that

2(A ∧B) ⊃⊂ (2A ∧2B)

is always assumed. A further example is Propositional Lax Logic (PLL) by
Fairtlough and Mendler [9], an intuitionistic monomodal logic for hardware
verification where the modality does not validate the rule of necessitation.

Finally, all intuitionistic modal logics reject the interdefinability of the two
operators:

2A ⊃⊂ ¬3¬A

and its boolean equivalents.
To the best of our knowledge, no systematic investigation of non-normal

modalities with an intuitionistic base has been carried out so far. Our aim is
1 For a recent survey see Stewart et al. [40] and references therein.
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to lay down a general framework which can accommodate in a uniform way
intuitionistic counterparts of the classical cube of non-normal modal logics,
as well as CCDLp and CK mentioned above. In the present investigation, we
deliberately restrict our attention to systems which are close to constructive
modal logics: all of them reject the axiom C3, so that the stronger system we
shall consider is CCDLp.2 As we shall see, the adoption of an intuitionistic base
leads to a finer analysis of non-normal modalities than in the classical case.
In addition to the motivations for classical non-normal modal logics briefly
recalled above, an intuitionistic interpretation of non-normal modalities may
be justified by more specific interpretations, of which we mention two.

The deontic interpretation: The standard interpretation of deontic op-
erators 2 (Obligatory), 3 (Permitted) is normal: but it has been known for
a long time that the normal interpretation is problematic when dealing for
instance with “Contrary to duty obligations”.3 One solution is to adopt a non-
normal interpretation, rejecting in particular the monotonicity principle (from
A ⊃ B is valid infer 2A ⊃ 2B). Moreover, a constructive reading of the de-
ontic modalities would further reject their interdefinability: one may require
that the permission of A must be justified explicitly or positively (say by a
proof from a corpus of norms) and not just established by the fact that ¬A
is not obligatory. This distinction is somewhat close to the distinction by von
Wright [47] between weak and strong permissions, also widely discussed by
Hansson [18] who distinguish explicit and implicit permissions on one side (the
strong ones) from tacit permissions on the other side (weak ones); recently in
Anglberger et al. [1] it is proposed a deontic logic where the modalities are
non-normal and not interdefinable.

The contextual interpretation: A contextual reading of the modal op-
erators is proposed in Mendler and de Paiva [33]. In this interpretation 2A
is read as “A holds in all contexts” and 3A as “A holds in some context”.
This interpretation invalidates C3, while retaining the distribution of 2 over
conjunction (C2). But this contextual interpretation is not the only possible
one. We can interpret 2A as A is “justified” (proved) in some context c, no
matter what is meant by a context (for instance a knowledge base), and 3A
as A is “compatible” (consistent) with every context. With this interpretation
both operators would be non-normal as they would satisfy neither C2, nor C3.

As we said, our aim is to provide a general framework for non-normal modal
logics with an intuitionistic base. However, in order to identify and restrain
the family of logics of interest, we adopt some criteria, which partially coincide
with Simpson’s requirements (Simpson [38]):

– The modal logics should be conservative extensions of IPL.
– The disjunction property must hold.

2 The extension of our framework to logics stronger than CCDLp, allowing C3 such as
Simpson intuitionistic modal logic, is beyond the scope of this work; however in Section 8
we make some preliminary considerations in the perspective of a future extension of our
results in this direction.

3 For a survey on puzzles related to a normal interpretation of the deontic modalities see
McNamara [32].
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– The two modalities should not be interdefinable.
– We do not consider systems containing the controversial C3.

Our starting point is the study of monomodal systems, which extend IPL with
either 2 or 3, but not both. We consider the monomodal logics corresponding
to the classical cube generated by the weakest logic E extended with conditions
M, N, C (with the exception of C3). We give an axiomatic characterisation of
these logics and equivalent cut-free sequent systems similar to the one by
Lavendhomme and Lucas [26] for the classical case.

Our main interest is however in logics which contain both 2 and 3, and
allow some form of interaction between the two. Their interaction is always
weaker than interdefinability. In order to define logical systems we take a
proof-theoretical perspective: the existence of a simple cut-free system, as in
the monomodal case, is our criterion to identify meaningful systems. A system
is considered if the combination of its sequent rules provides a cut-free system.

It turns out that one can distinguish three degrees of interaction between
2 and 3, that are determined by answering the following question, for any
two formulas A and B:

under which conditions are 2A and 3B jointly inconsistent?

Since there are three degrees of interaction, even the weakest classical logic
E has three intuitionistic counterparts of increasing strength. When combined
with M, N, C properties of the classical cube, we end up with a family of 24
distinct systems, instead of just 8 systems as in the classical case. All systems
enjoy a cut-free calculus and, as we prove, an equivalent Hilbert axiomatisa-
tion. This shows that intuitionistic non-normal modal logic allows for finer
distinctions, whence a richer theory than in the classical case.

The existence of a cut-free calculus for each of the logics has some impor-
tant consequences: we can prove that all systems are indeed distinct, that all
of them are “good” extensions of intuitionistic logic, and more importantly, all
of them are decidable.

We then tackle the problem of giving a semantic characterisation of this
family of logics. The natural setting is to consider an intuitionistic version
of neighbourhood models for classical logics. Since we want to deal with the
language containing both 2 and 3, we consider neighbourhood models con-
taining two distinct neighbourhood functions N2 and N3. As in standard
intuitionistic models, they also contain a partial order on worlds. Different
forms of interaction between the two modal operators correspond to different
(but natural) conditions relating the two neighbourhood functions. By consid-
ering further closure conditions of neighbourhoods, analogous to the classical
case, we can show that this semantics characterises modularly the full family
of logics. Moreover we prove, through a filtration argument, that all logics
have the finite model property, thereby obtaining a semantic proof of their
decidability.

It is worth noticing that in the (easier) case of intuitionistic monomodal
logic with only 2 a similar semantics and a matching completeness theorem
have been given by Goldblatt [17]. More recently, Goldblatt’s semantics for
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the intuitionistic monomodal version of system E has been reformulated and
extended to axiom T by Witczak [45].

But our neighbourhood models have a wider application than the char-
acterisation of the family of logics mentioned above. We show that adding
suitable interaction conditions between N2 and N3 we can capture CCDLp as
well as CK. We show this fact first directly by proving that both CCDLp and
CK are sound and complete with respect to our models satisfying an additional
condition. We then prove the same result by relying on some pre-existing se-
mantics of these two logics and by a mutual transformation of models. In case
of CCDLp, there exists already a characterisation of it in terms of neighbour-
hood models, given by Kojima [24], although the type of models is different.
In particular, Kojima’s models contain only one neighbourhood function.

The case of CK is more complicated, whence more interesting: this logic
is characterised by a relational semantics defined in terms of Kripke models
of a peculiar nature: they contain “fallible” worlds, i.e. worlds which force ⊥.
We are able to show directly that relational models can be transformed into
our neighbourhood models satisfying a specific interaction condition and vice
versa.

All in all, we get that the well-known logic CK can be characterised by
neighbourhood models, which are quite standard structures, alternative to
non-standard Kripke models with fallible worlds. This fact provides further
evidence in favour of our neighbourhood semantics as a versatile tool to analyse
intuitionistic non-normal modal logics.

2 Classical non-normal modal logics

2.1 Hilbert systems

Classical non-normal modal logics are defined on a propositional modal lan-
guage L based on a set Atm of countably many propositional variables. For-
mulas are given by the following grammar, where p ranges over Atm:

A ::= p | ⊥ | A ∧A | A ∨A | A ⊃ A | 2A | 3A.
We use A,B,C as metavariables for formulas of L. >, ¬A and A ⊃⊂ B are

abbreviations for, respectively, ⊥ ⊃ ⊥, A ⊃ ⊥ and (A ⊃ B)∧(B ⊃ A). We take
both modal operators 2 and 3 as primitive (as well as all other connectives),
as it will be convenient for the intuitionistic case. Their duality in classical
modal logics is recovered by adding to any system one of the duality axioms
Dual2 or Dual3 (Figure 1), which are equivalent in the classical setting.

The weakest classical non-normal modal logic E is defined in language L
by extending classical propositional logic (CPL) with a duality axiom and rule
E2, and it can be extended further by adding any combination of axioms M2,
C2 and N2. We obtain in this way eight distinct systems (Figure 2), which
compose the family of classical non-normal modal logics.

Equivalent axiomatisations for these systems are given by considering the
modal axioms in the right-hand column of Figure 1(a). Thus, logic E could be
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a. Modal axioms and rules defining non-normal modal logics

E2
A ⊃ B B ⊃ A

2A ⊃ 2B
E3

A ⊃ B B ⊃ A
3A ⊃ 3B

M2 2(A ∧B) ⊃ 2A M3 3A ⊃ 3(A ∨B)

C2 2A ∧2B ⊃ 2(A ∧B) C3 3(A ∨B) ⊃ 3A ∨3B

N2 2> N3 ¬3⊥

b. Duality axioms

Dual2 3A ⊃⊂ ¬2¬A Dual3 2A ⊃⊂ ¬3¬A

c. Further relevant modal axioms and rules

K2 2(A ⊃ B) ⊃ (2A ⊃ 2B) K3 2(A ⊃ B) ⊃ (3A ⊃ 3B)

Nec
A
2A

Mon2
A ⊃ B

2A ⊃ 2B
Mon3

A ⊃ B
3A ⊃ 3B

Fig. 1: Modal axioms.

E

M

EC EN

MC MN

ECN

MCN (K)

Fig. 2: The classical cube.

defined by extending CPL with axiom Dual2 and rule E3, and its extensions
are given by adding combinations of axioms M3, C3 and N3.

It is worth recalling that axioms M2, M3 and N2 are syntactically equiv-
alent with the rules Mon2, Mon3 and Nec, respectively, and that axiom K2

is derivable from M2 and C2. As a consequence, we have that the top system
MCN is equivalent to the weakest classical normal modal logic K.

2.2 Neighbourhood semantics

The standard semantics for classical non-normal modal logics is based on the
so-called neighbourhood (or minimal, or Scott-Montague) models.

Definition 1 A neighbourhood model is a tripleM = 〈W,N ,V〉, where W is
a non-empty set, N is a neighbourhood function W −→ P(P(W)), and V is a
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valuation function W −→ P(Atm). A neighbourhood model is supplemented,
closed under intersection, or contains the unit, if N satisfies the following
properties:

If α ∈ N (w) and α ⊆ β, then β ∈ N (w) (Supplementation);
If α, β ∈ N (w), then α ∩ β ∈ N (w) (Closure under intersection);
W ∈ N (w) for all w ∈ W (Containing the unit).

The forcing relation w 
 A is defined inductively as follows:

w 
 p iff p ∈ V(w);
w 6
 ⊥;
w 
 B ∧ C iff w 
 A and w 
 B;
w 
 B ∨ C iff w 
 A or w 
 B;
w 
 B ⊃ C iff w 
 B implies w 
 C;
w 
 2B iff [B] ∈ N (w);
w 
 3B iff W \ [B] /∈ N (w);

where [B] denotes the set {v ∈ W | v 
 B}, called the truth set of B.

We can also recall that in the supplemented case, the forcing conditions
for modal formulas are equivalent to the following ones:

w 
 2B iff there is α ∈ N (w) s.t. α ⊆ [B];
w 
 3B iff for all α ∈ N (w), α ∩ [B] 6= ∅.

The neighbourhood semantics characterises the cube of classical non-normal
modal logics:

Theorem 1 (Chellas [6]) Logic E(M,C,N) is sound and complete with respect
to neighbourhood models (which in addition are supplemented, closed under
intersection, or contain the unit).

3 Intuitionistic non-normal monomodal logics

Our definition of intuitionistic non-normal modal logics begins with monomodal
logics, that is logics containing only one modality, either 2 or 3. We first define
the axiomatic systems, and then present their sequent calculi.

Under “intuitionistic modal logics” we understand any modal logic L that
extends intuitionistic propositional logic (IPL) and satisfies the following re-
quirements:

(R1) L is conservative over IPL: its non-modal fragment coincides with IPL.
(R2) L satisfies the disjunction property: if A∨B is derivable, then at least one

formula between A and B is also derivable.

3.1 Hilbert systems

From the point of view of axiomatic systems, two different classes of intu-
itionistic non-normal monomodal logics can be defined by analogy with the
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2-IE

2-IM

2-IEC 2-IEN

2-IMC 2-IMN

2-IECN

2-IMCN

3-IE

3-IM

3-IEN

3-IMN

Fig. 3: The lattices of intuitionistic non-normal monomodal logics.

definition of classical non-normal modal logics (cf. Section 2). Intuitionistic
modal logics are modal extensions of IPL, for which we consider the following
axiomatisation:
⊃-1 A ⊃ (B ⊃ A) ∧-1 A ∧B ⊃ A
⊃-2 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) ∧-2 A ∧B ⊃ B
∨-1 A ⊃ A ∨B ∧-3 A ⊃ (B ⊃ A ∧B)
∨-2 B ⊃ A ∨B efq ⊥ ⊃ A
∨-3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨B ⊃ C)) mp A A ⊃ B

B

We define over IPL two families of intuitionistic non-normal monomodal
logics, that depend on the considered modal operator, and are called therefore
the 2- and the 3-family. The 2-family is defined in language L2 := L\{3} by
adding to IPL the rule E2 and any combination of axioms M2, C2 and N2. The
3-family is defined instead in language L3 := L\{2} by adding to IPL the rule
E3 and any combination of axioms M3 and N3. It is worth noticing that we do
not consider intuitionistic non-normal modal logics containing axiom C3. We
denote the resulting logics by, respectively, 2-IE∗ and 3-IE∗, where E∗ replaces
any system of the classical cube (for 3-logics, any system not containing C3).

Notice that, having rejected the definability of the lacking modality, 2- and
3-logics are distinct, as2 and3 behave differently. Moreover, as a consequence
of the fact that the systems in the classical cube are pairwise non-equivalent,
we have that the 2-family contains eight distinct logics, while the 3-family
contains four distinct logics (something not derivable in a classical system
is clearly not derivable in the corresponding intuitionistic system). It is also
worth noticing that, as it happens in the classical case, axiomsM2,M3 and N2

are interderivable, respectively, with rules Mon2, Mon3 and Nec, and that K2

is derivable from M2 and C2 (as the standard derivations are intuitionistically
valid).

3.2 Sequent calculi

We now present sequent calculi for intuitionistic non-normal monomodal log-
ics. The calculi are defined as modal extensions of a given sequent calculus for
IPL. We take G3ip as the base calculus (Figure 4), and extend it with suitable
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Ax Γ, p⇒ p L⊥ Γ,⊥ ⇒ A

Γ,A,B ⇒ C
L∧

Γ,A ∧B ⇒ C
Γ ⇒ A Γ ⇒ B

R∧
Γ ⇒ A ∧B

Γ,A⇒ C Γ,B ⇒ C
L∨

Γ,A ∨B ⇒ C

Γ ⇒ Ai
R∨ (i = 0, 1)

Γ ⇒ A0 ∨A1

Γ,A ⊃ B ⇒ A Γ,B ⇒ C
L⊃

Γ,A ⊃ B ⇒ C

Γ,A⇒ B
R⊃

Γ ⇒ A ⊃ B

Fig. 4: Rules of G3ip (Troelstra and Schwichtenberg [41]).

A⇒ B B ⇒ A
Eseq
2 Γ,2A⇒ 2B

A⇒ B B ⇒ A
Eseq
3 Γ,3A⇒ 3B

A⇒ B
Mseq

2 Γ,2A⇒ 2B
A⇒ B

Mseq
3 Γ,3A⇒ 3B

⇒ A
Nseq

2 Γ ⇒ 2A
A⇒

Nseq
3 Γ,3A⇒ B

A1, ..., An ⇒ B B ⇒ A1 ... B ⇒ An
E2C

seq (n ≥ 1)
Γ,2A1, ...,2An ⇒ 2B

A1, ..., An ⇒ B
M2C

seq (n ≥ 1)
Γ,2A1, ...,2An ⇒ 2B

Fig. 5: Modal rules for Gentzen calculi.

combinations of the modal rules in Figure 5. The 2-rules can be compared
with the rules given in Lavendhomme and Lucas [26], where sequent calculi
for classical non-normal modal logics are presented. However, our rules are
slightly different as (i) they have a single formula in the right-hand side of se-
quents; and (ii) contexts are added to the left-hand side of sequents appearing
in the conclusion. Restriction (i) is adopted in order to have single-succedent
calculi (as G3ip is), while with (ii) we implicitly embed weakening in the ap-
plication of the modal rules. We consider the sequent calculi to be defined by
the modal rules that are added to G3ip. The calculi are the following.
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G.2-IE := Eseq
2 G.2-IEC := E2C

seq

G.2-IM := Mseq
2 G.2-IMC := M2C

seq

G.2-IEN := Eseq
2 + Nseq

2 G.2-IECN := E2C
seq + Nseq

2

G.2-IMN := Mseq
2 + Nseq

2 G.2-IMCN := M2C
seq + Nseq

2

G.3-IE := Eseq
3

G.3-IM := Mseq
3

G.3-IEN := Eseq
3 + Nseq

3

G.3-IMN := Mseq
3 + Nseq

3

Notice that — as in Lavendhomme and Lucas [26] — axiom C2 is captured
by modifying the rules Eseq

2 and Mseq
2 . In particular, these rules are replaced

by E2C
seq and M2C

seq, respectively, that are the generalisations of Eseq
2 and

Mseq
2 with n principal formulas (instead of just one) in the left-hand side of

sequents. Observe that E2C
seq andM2C

seq are non-standard, as they introduce
an arbitrary number of modal formulas with a single application, and that
E2C

seq has in addition an arbitrary number of premisses. Another way of
looking at E2C

seq and M2C
seq is to consider them as infinite sets of rules, each

set containing a standard rule for any n ≥ 1. Under the latter interpretation,
the calculi are non-standard anyway, as they are defined by infinite sets of
rules.

We now prove the admissibility of some structural rules, and then show the
equivalence between the sequent calculi and the associated Hilbert systems.

Proposition 1 The following weakening and contraction rules are height-
preserving admissible in any monomodal calculus:

Γ ⇒ B
Lwk

Γ,A⇒ B
Γ ⇒

Rwk
Γ ⇒ A

Γ,A,A⇒ B
ctr

Γ,A⇒ B
.

Proof By induction on n, we show that whenever the premiss of an application
of Lwk, Rwk or ctr has a derivation of height n, then its conclusion has a
derivation of the same height. As usual, the proof considers the last rule applied
in the derivation of the premiss (when the premiss is not an initial sequent).
For left and right weakening, if the last rule applied is a rule of G3ip, then the
proof is standard. If it is a modal rule, then the proof is easy. For instance, the
premiss Γ ⇒ of Rwk is necessarily derived by Nseq

3 . Then Γ contains a formula
3B that is principal in the application of Nseq

3 , which in turn has B ⇒ as
premiss. By a different application of Nseq

3 to B ⇒ we can derive Γ ⇒ A for
any A.

For contraction, the proof is known if the last rule applied is a rule of G3ip.
If this is a modal rule, then the proof is easy. The most interesting case is
possibly when both occurrences of A in the premiss Γ,A,A ⇒ B of ctr are
principal in the last rule application. In this case, the last rule is either E2C

seq

or M2C
seq. If it is M2C

seq, then A ≡ 2C for some C, and the sequent is derived
from D1, ..., Dn, C, C ⇒ for some 2D1, ...,2Dn in Γ . By inductive hypothesis
we can apply ctr to the last sequent and obtain D1, ..., Dn, C ⇒, and then by
M2C

seq derive sequent Γ,A ⇒ B, which is the conclusion of ctr (the proof is
analogous for E2C

seq).
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We now show that the cut rule
Γ ⇒ A Γ ′, A⇒ B

cut
Γ, Γ ′ ⇒ B

is admissible in any monomodal calculus. The proof makes use of the following
notion of weight of formulas:

Definition 2 (Weight of formulas) The function w assigning to each for-
mula A its weight w(A) is defined as follows: w(⊥) = 0; w(p) = 1; w(A ◦B) =
w(A) + w(B) + 1 for ◦ ≡ ∧,∨,⊃; and w(2A) = w(3A) = w(A) + 2.

Observe that, given the present definition, ¬A has a smaller weight than
2A and 3A. Although irrelevant to the next theorem, this shall be used in
Section 4 for the proof of cut elimination for bimodal calculi.

Theorem 2 The rule cut is admissible in any monomodal calculus.

Proof Given a derivation of a sequent with some applications of cut, we show
how to remove any such application and obtain a derivation of the same se-
quent without cut. The proof is by double induction, with primary induction
on the weight of the cut formula and secondary induction on the cut height.
We recall that, for any application of cut, the cut formula is the formula which
is deleted by that application, while the cut height is the sum of the heights
of the derivations of the premisses of cut.

We just consider the cases in which the cut formula is principal in the
last rule applied in the derivation of both premisses of cut. Moreover, we treat
explicitly only the cases in which both premisses are derived by modal rules, as
the non-modal cases are already considered in the proof of cut admissibility for
G3ip, and because modal and non-modal rules do not interact in any relevant
way.
• (E2C

seq; E2C
seq). Let Γ1 = A1, ..., An and Γ2 = C1, ..., Cm. The first

derivation is converted into the second one, which contains several applications
of cut on a cut formula of smaller weight.

Γ1 ⇒ B B ⇒ A1 ... B ⇒ AnE2C
seq

Γ,2Γ1,⇒ 2B

B,Γ2 ⇒ D D ⇒ B D ⇒ C1 ... D ⇒ Cm
E2C

seq

Γ ′,2B,2Γ2 ⇒ 2D
cut

Γ, Γ ′,2Γ1,2Γ2 ⇒ 2D

;

Γ1 ⇒ B B,Γ2 ⇒ D
cut

Γ1, Γ2 ⇒ D

D ⇒ B B ⇒ Ai
(
cut

)n
i=1D ⇒ Ai D ⇒ C1 ... D ⇒ Cm

E2C
seq

Γ, Γ ′,2Γ1,2Γ2 ⇒ 2D

• (M2C
seq; M2C

seq) is analogous to (E2C
seq; E2C

seq). (Eseq
2 ; Eseq

2 ) and (Mseq
2 ;

Mseq
2 ) are the particular cases where n,m = 1.
• (Nseq

2 ; E2C
seq). Let Γ1 = B1, ..., Bn. The first derivation is converted into

the second one, which has an application of cut on a cut formula of smaller
weight.



12 Tiziano Dalmonte et al.

⇒ A
Nseq

2 Γ ⇒ 2A

A,Γ1 ⇒ C C ⇒ A C ⇒ B1 ... C ⇒ Bn
E2C

seq

Γ ′,2A,2Γ1 ⇒ 2C
cut

Γ, Γ ′,2Γ1 ⇒ 2C

;

⇒ A A,Γ1 ⇒ C
cut

Γ1 ⇒ C C ⇒ B1 ... C ⇒ Bn E2C
seq

Γ, Γ ′,2Γ1 ⇒ 2C

• (Nseq
2 ; M2C

seq) is analogous to (Nseq
2 ; E2C

seq). (Nseq
2 ; Eseq

2 ) and (Nseq
2 ; Mseq

2 )
are the particular cases where n = 1.
• (Eseq

3 ; Eseq
3 ) and (Mseq

3 ; Mseq
3 ) are analogous to (Eseq

2 ; Eseq
2 ) and (Mseq

2 ; Mseq
2 ),

respectively.
• (Eseq

3 ; Nseq
3 ).

A⇒ B B ⇒ A
Eseq
3 Γ,3A⇒ 3B

B ⇒
Nseq

3
Γ ′,3B ⇒ C

cut
Γ, Γ ′,3A⇒ C

;

A⇒ B B ⇒
cut

A⇒
Nseq

3
Γ, Γ ′,3A⇒ C

• (Mseq
3 ; Nseq

3 ) is analogous to (Eseq
3 ; Nseq

3 ).

As a consequence of the admissibility of cut we obtain the equivalence
between the sequent calculi and the axiomatic systems.

Theorem 3 Let L be any intuitionistic non-normal monomodal logic. Then
the calculus G.L is equivalent to system L.

Proof We prove that the axioms and rules of L are derivable in G.L. For the
axioms of IPL we can consider their derivations in G3ip, whereas mp is simu-
lated by cut in the usual way. Here we show that any modal rule allows us to
derive the corresponding axiom:

⇒ A ⊃ B A,A ⊃ B ⇒ B
cut

A⇒ B

⇒ B ⊃ A B,B ⊃ A⇒ A
cut

B ⇒ A
Eseq
22A⇒ 2B

R⊃⇒ 2A ⊃ 2B

A,B ⇒ A ∧B A ∧B ⇒ A A ∧B ⇒ B
E2C

seq

2A,2B ⇒ 2(A ∧B)
L∧

2A ∧2B ⇒ 2(A ∧B)
R⊃⇒ 2A ∧2B ⊃ 2(A ∧B)

⇒ >
Nseq

2⇒ 2>

⊥ ⇒
Nseq

3
3⊥ ⇒

R¬⇒ ¬3⊥

A ∧B ⇒ A
Mseq

2
2(A ∧B)⇒ 2A

R⊃⇒ 2(A ∧B) ⊃ 2A

A⇒ A ∨B
Mseq

3
3A⇒ 3(A ∨B)

R⊃⇒ 3A ⊃ 3(A ∨B)
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For the other direction, we prove that the rules of G.L are derivable in L.
As before, it is enough to consider the modal rules. The derivations are in
most cases straightforward, and we just consider the following ones, leaving
the remaining cases to the reader:
• If L contains N2, then Nseq

2 is derivable. Assume `L A. Then by Nec
(which is equivalent to N2), `L 2A.
• If L contains N3, then Nseq

3 is derivable. Assume `L A ⊃ ⊥. Since
`L ⊥ ⊃ A, by Eseq

3 , `L 3A ⊃ 3⊥. Then `L ¬3⊥ ⊃ ¬3A, and, since `L ¬3⊥,
we have `L ¬3A.
• If L contains C2, then E2C

seq is derivable. Assume `L A1 ∧ ...∧An ⊃ B
and `L B ⊃ Ai for all 1 ≤ i ≤ n. Then `L B ⊃ A1 ∧ ... ∧ An. By E2,
`L 2(A1 ∧ ... ∧ An) ⊃ 2B. In addition, by several applications of C2, `L
2A1 ∧ ... ∧2An ⊃ 2(A1 ∧ ... ∧An). Therefore `L 2A1 ∧ ... ∧2An ⊃ 2B.

4 Intuitionistic non-normal bimodal logics

In this section, we present intuitionistic non-normal modal logics endowed with
two modalities 2 and 3. We first present their sequent calculi, and then give
equivalent axiomatisations.

A simple way to define intuitionistic non-normal bimodal logics would be
to consider the fusion of two monomodal logics that belong respectively to
the 2- and to the 3-family. Given two logics 2-IE∗ and 3-IE∗, their fusion in
language L2 ∪ L3 is the smallest bimodal logics containing 2-IE∗ and 3-IE∗
(cf. Gabbay et al. [13] for the notion of fusion in normal modal logics; for
the sake of simplicity we can assume that L2 and L3 share the same set of
propositional variables, and differ only on 2 and 3). The resulting logic is
axiomatised simply by adding to IPL the modal axioms and rules of 2-IE∗,
plus the modal axioms and rules of 3-IE∗.

It is clear, however, that in the resulting systems the modalities do not
interact at all, as there is no axiom involving both 2 and 3. On the contrary,
finding suitable interactions between the modalities is often the main issue
when intuitionistic bimodal logics are concerned. In that case, by reflecting the
fact that, in IPL, the connectives are not interderivable, it is usually required
that 2 and 3 are not dual. We take this lack of a duality as an additional
requirement for the definition of intuitionistic non-normal bimodal logics:

(R3) 2 and 3 are not interdefinable.

In order to define intuitionistic non-normal bimodal logics by axiomatic
systems, we would need to select the axioms between a plethora of possible
formulas satisfying (R3). In the literature on intuitionistic normal modal logics
many different axioms have been considered (see e.g. Fischer Servi [10], Wolter
and Zakharyaschev [46], Simpson [38]). Here we take a different way, and define
the logics starting with their sequent calculi.

We proceed as follows. Intuitionistic non-normal bimodal logics are defined
by their sequent calculi. The calculi are conservative extensions of a given cal-
culus for IPL, and have as modal rules some characteristic rules of intuitionistic
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⇒ A B ⇒weakseqa Γ,2A,3B ⇒ C
A⇒ ⇒ Bweakseqb Γ,2A,3B ⇒ C

A,B ⇒ ¬B ⇒ A
negseqa Γ,2A,3B ⇒ C

A,B ⇒ ¬A⇒ B
negseqb Γ,2A,3B ⇒ C

A,B ⇒
strseq

Γ,2A,3B ⇒ C

Fig. 6: Interaction rules for sequent calculi.

non-normal monomodal logics, plus some rules connecting 2 and 3. In addi-
tion, we require that the cut rule is admissible. As usual, this means that
adding rule cut to the calculus does not extend the set of derivable sequents.

To the purpose of defining the basic systems, we consider only interactions
between 2 and 3 that can be seen as forms of “weak duality principles”. In
particular we consider the following question: For any two formulas A and B,
under which conditions are 2A and 3B jointly inconsistent? We distinguish
three degrees: 2A and 3B are jointly inconsistent when

(i) one of the two is > and the other is ⊥.
(ii) A is equivalent to ¬B, or B is equivalent to ¬A.
(iii) A and B are jointly inconsistent.

Finally, we will distinguish logics that are monotonic from logics that are
non-monotonic.

In practice, we realise this list of desiderata as follows. As before, we
take G3ip (Figure 4) as the base calculus for intuitionistic logics. This is
extended with combinations of the characteristic rules of intuitionistic non-
normal monomodal logics given in Figure 5. The difference is that now the
calculi contain both some rules for 2 and some rules for 3. In order to distin-
guish monotonic and non-monotonic logics, we require that the calculi contain
either both Eseq

2 and Eseq
3 (in this case the corresponding logic will be non-

monotonic), or both Mseq
2 and Mseq

3 (corresponding to monotonic logics). In
addition, the calculi shall contain some of the interaction rules displayed in
Figure 6. Since the logics are also distinguished with respect to the interaction
between the modalities, we require that the calculi contain either both weakseqa

and weakseqb , or both negseqa and negseqb , or strseq.

In the following we present the sequent calculi for intuitionistic non-normal
bimodal logics obtained by following this methodology. Then for each sequent
calculus we define an equivalent axiomatisation. As we shall see, we end up
with 24 distinct logics forming the lattice in Figure 9.
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4.1 Sequent calculi for logics without C2

In the first part, we focus on sequent calculi for logics containing only ax-
ioms among M2, M3, N2 and N3 — in other words, we do not consider the
axiom C2. The calculi are obtained by adding to G3ip (Figure 4) suitable
combinations of the modal rules in Figures 5 and 6. Although in principle
any combination of rules could define a calculus, we accept only the calculi
that satisfy the restrictions mentioned above. In particular, this entails that
we prove cut elimination. As usual, the first step towards the study of cut
elimination is to prove the admissibility of the other structural rules.

Proposition 2 Weakening and contraction are height-preserving admissible
in each sequent calculus defined by any combination of modal rules in Figures
5 and 6.

Proof The proposition is proved by extending the proof of Proposition 1 with
an examination of the interaction rules in Figure 6. Due to their form, however,
it is easy to verify that if the premiss of wk or ctr is derivable by any interaction
rule, then the conclusion is derivable by the same rule.

We can now examine the admissibility of the cut rule. As stated by the
following theorem, our methodology leads to consideration of 12 sequent calculi
for intuitionistic non-normal bimodal logics.

Theorem 4 The cut rule is admissible in the following calculi:

G.IE1 := Eseq
2 + Eseq

3 + weakseqa + weakseqb

G.IE2 := Eseq
2 + Eseq

3 + negseqa + negseqb

G.IE3 := Eseq
2 + Eseq

3 + strseq

G.IM := Mseq
2 + Mseq

3 + strseq

Moreover, letting G∗ be any of the previous calculi, cut is admissible in

G∗N3 := G∗ + Nseq
3

G∗N2 := G∗ + Nseq
3 + Nseq

2

Proof The structure of the proof is similar to the one of Theorem 2. As before,
we consider only the cases where the cut formula is principal in the last rule
applied in the derivation of both premisses, with the further restriction that
the last rules are modal ones.

The combinations between 2-rules, or between 3-rules, have been already
considered in the proof of Theorem 2. Therefore we only consider here the
possible combinations of 2- or 3-rules with rules for interaction.
• (Eseq

2 ; weakseqa ). The derivation on the left is transformed into the deriva-
tion on the right.

A⇒ B B ⇒ A
Eseq
2 Γ,2A⇒ 2B

⇒ B C ⇒ weakseqa
Γ ′,2B,3C ⇒ D

cut
Γ, Γ ′,2A,3C ⇒ D

;

⇒ B B ⇒ A
cut ⇒ A C ⇒weakseqa

Γ, Γ ′,2A,3C ⇒ D

• (Eseq
3 ; weakseqa ).
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A⇒ B B ⇒ A
Eseq
3 Γ,3A⇒ 3B

⇒ C B ⇒ weakseqa
Γ ′,2C,3B ⇒ D

cut
Γ, Γ ′,3A,2C ⇒ D

; ⇒ C
A⇒ B B ⇒

cut
A⇒ weakseqa

Γ, Γ ′,3A,2C ⇒ D

• (Eseq
2 ; weakseqb ).

A⇒ B B ⇒ A
Eseq
2 Γ,2A⇒ 2B

B ⇒ ⇒ C weakseqbΓ ′,2B,3C ⇒ D
cut

Γ, Γ ′,2A,3C ⇒ D

;

A⇒ B B ⇒
cut

A⇒ ⇒ Cweakseqb Γ, Γ ′,2A,3C ⇒ D

• (Eseq
3 ; weakseqb ).

A⇒ B B ⇒ A
Eseq
3 Γ,3A⇒ 3B

C ⇒ ⇒ B weakseqbΓ ′,2C,3B ⇒ D
cut

Γ, Γ ′,3A,2C ⇒ D

; ⇒ C
⇒ B B ⇒ A

cut⇒ A weakseqbΓ, Γ ′,3A,2C ⇒ D

• (Eseq
3 ; negseqa ).

A⇒ B B ⇒ A
Eseq
2 Γ,3A⇒ 3B

C,B ⇒ ¬B ⇒ C
negseqbΓ ′,2C,3B ⇒ D

cut
Γ, Γ ′,2C,3A⇒ D

;

A⇒ B C,B ⇒
cut

C,A⇒

B ⇒ A
¬A⇒ ¬B ¬B ⇒ C

cut¬A⇒ C
negseqbΓ, Γ ′,2C,3A⇒ D

Observe that the second derivation has two applications of cut, both of
them with a cut formula of smaller weight; in particular w(¬B) < w(3B) (cf.
Definition 2).
• (Eseq

2 ; negseqb ).

A⇒ B B ⇒ A
Eseq
2 Γ,2A⇒ 2B

B,C ⇒ ¬B ⇒ C
negseqbΓ ′,2B,3C ⇒ D

cut
Γ, Γ ′,2A,3C ⇒ D

;

A⇒ B B,C ⇒
cut

A,C ⇒

B ⇒ A
¬A⇒ ¬B ¬B ⇒ C

cut¬A⇒ C
negseqbΓ, Γ ′,2A,3C ⇒ D

• (Mseq
2 ; strseq).

A⇒ B
Mseq

2 Γ,2A⇒ 2B

B,C ⇒
strseq

Γ ′,2B,3C ⇒ D
cut

Γ, Γ ′,2A,3C ⇒ D

;

A⇒ B B,C ⇒
cut

A,C ⇒
strseq

Γ, Γ ′,2A,3C ⇒ D

• (Nseq
2 ; strseq).

⇒ A
Nseq

2 Γ ⇒ 2A

A,B ⇒
strseq

Γ ′,2A,3B ⇒ C
cut

Γ, Γ ′,3B ⇒ C

;

⇒ A A,B ⇒
cut

B ⇒
Nseq

3
Γ, Γ ′,3B ⇒ C
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The lacking combinations can be easily treated in similar ways. Observe
that Nseq

3 does not interact significantly with any interaction rule, since the
principal formula 3B occurs in the left-hand side of the concusion.

It can be shown that all combinations of rules excluded from Theorem
4 do not give a cut-free calculus. In particular, cut elimination fails if we
take rule Nseq

2 and we do not take rule Nseq
3 , or if we combine the monotonic

rules for 2 and 3 with interaction rules different from strseq. Here we show
some explicative examples, we leave to the reader to check the remaining
combinations.

Example 1 Sequent 3⊥ ⇒ is derivable from Nseq
2 + weakseqa + cut (without

Nseq
3 ), but it is not derivable from Nseq

2 + weakseqa without cut. A possible
derivation is the following:

⇒ >
Nseq

2 ⇒ 2>
⇒ > ⊥ ⇒ weakseqa
2>,3⊥ ⇒

cut
3⊥ ⇒

It is clear however that sequent 3⊥ ⇒ does not have any cut-free derivation
without applying Nseq

3 , as no rule different from Nseq
3 has 3⊥ ⇒ in the conclu-

sion. We shall consider in Section 7 a calculus containing Nseq
2 and not Nseq

3 .
As we shall see, that calculus has interaction rules of a different form.

Example 2 Sequent 2¬p,3(p∧ q)⇒ is derivable from Mseq
2 + negseqa + negseqb

+ cut, but it is not derivable from Mseq
2 + negseqa + negseqb without cut. A

possible derivation is as follows:

¬p⇒ ¬(p ∧ q)
Mseq

2
2¬p⇒ 2¬(p ∧ q)

¬(p ∧ q), p ∧ q ⇒ ¬(p ∧ q)⇒ ¬(p ∧ q)
negseqa

2¬(p ∧ q),3(p ∧ q)⇒
cut

2¬p,3(p ∧ q)⇒

Let us now try to derive bottom-up the sequent without using cut. As a last rule
we can only apply negseqa or negseqb , as they are the only rules with a conclusion
of the right form. In the first case, the premisses would be ¬p, p ∧ q ⇒, and
¬¬p⇒ p∧ q; while in the second case the premisses would be ¬p, p∧ q ⇒, and
¬(p ∧ q) ⇒ ¬p. It is clear, however, that in both cases the second premiss is
not derivable.

4.2 Sequent calculi for logics with C2

We now consider sequent calculi for logics containing the axiom C2. We have
seen in the case of monomodal 2-logics that the rules for congruence and
monotonicity of 2 must be generalised to n principal boxed formulas in order
to obtain cut-free calculi which capture C2. For the same reason, interaction
rules need to be generalised in an analogous way. In this regard, observe that
the rules in Figure 6 do not provide cut-free calculi if combined with E2C

seq

or M2C
seq, as the following example shows.
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Example 3 The sequent 2p,2¬p,3> ⇒ is derivable by M2C
seq + weakseqa +

weakseqb + cut, but is not derivable by M2C
seq + weakseqa + weakseqb without

cut. The derivation with cut is as follows:
p,¬p⇒ ⊥

M2C
seq

2p,2¬p⇒ 2⊥
⊥ ⇒ ⇒ > weakseqb2⊥,3> ⇒

cut
2p,2¬p,3> ⇒

In contrast, the sequent is not derivable without cut, as the only applicable
rule would be weakseqb , but neither p nor ¬p is a contradiction.

Suitable generalisations of rules weakseqb , negseqa , strseq are displayed in Fig-
ure 7. Observe that the rule weakseqa has not been modified, and more inter-
estingly, that there is no rule corresponding to negseqb . Concerning weakseqa , as
a difference with other rules, the boxed formula which is principal in an ap-
plication of weakseqa occurs unboxed only in the right-hand side of the premiss:
for this reason the rule needs not to be modified (as shown in the proof of
Theorem 5).

Concerning negseqb , its generalisation to n principal formulas would be as
follows:

A1, ..., An, B ⇒ ¬(A1 ∧ ... ∧An)⇒ B
negbC

seq

Γ,2A1, ...,2An,3B ⇒ C
.

This rule is not analytic as the right premiss contains a conjuction which
does not occur in the conclusion. In contrast with the case of rules E2C

seq and
negseqa , it is not possible to decompose the right premiss into simpler premisses.
In particular, notice that taking the n premisses ¬A1 ⇒ B, ..., ¬An ⇒ B is not
the same as taking ¬(A1∧...∧An)⇒ B, since ¬(A1∧...∧An) ⊃ ¬A1∨...∨¬An

is not valid in intuitionistic logic. At present it is an open problem whether
adopting the rule negbC

seq we would still obtain a cut-free calculus. For this
reason we exclude this rule from the calculi for C2, and we stipulate that
the calculi G.IE2C∗ contain only rule negaC

seq. As a consequence, the calculi
G.IE2C∗ are not proper extensions of G.IE∗2 .

As before, it can be easily proved that weakening and contraction are
height-preserving admissible in the considered systems.

Proposition 3 Weakening and contraction are height-preserving admissible
in each sequent calculus defined by any combination of modal rules in Figures
5 and 7.

Following our methodology, we obtain again 12 sequent calculi, as stated
by the following theorem:

Theorem 5 The rule cut is admissible in the following calculi:

G.IE1C := E2C
seq + Eseq

3 + weakseqa + weakbC
seq

G.IE2C := E2C
seq + Eseq

3 + negaC
seq

G.IE3C := E2C
seq + Eseq

3 + strCseq

G.IMC := M2C
seq + Mseq

3 + strCseq
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⇒ A B ⇒weakseqa Γ,2A,3B ⇒ C
A1, ..., An ⇒ ⇒ B

weakbC
seq

Γ,2A1, ...,2An,3B ⇒ C

A1, ..., An, B ⇒ ¬B ⇒ A1 ... ¬B ⇒ An
negaC

seq

Γ,2A1, ...,2An,3B ⇒ C

A1, ..., An, B ⇒
strCseq

Γ,2A1, ...,2An,3B ⇒ C

Fig. 7: Modified interaction rules for C2. For each rule we have n ≥ 1.

Moreover, letting GC∗ be any of the previous calculi, cut is admissible in

GC∗N3 := GC∗ + Nseq
3

GC∗N2 := GC∗ + Nseq
3 + Nseq

2

Proof As before, we only present some relevant cases.

• (E2C
seq; weakseqa ). Let Γ1 be the multisetA1, ..., An, and2Γ1 be2A1, ...,2An.

Γ1 ⇒ B B ⇒ A1 ... B ⇒ AnE2C
seq

Γ,2Γ1 ⇒ 2B
⇒ B C ⇒ weakseqa
Γ ′,2B,3C ⇒ D

cut
Γ, Γ ′,2Γ1,3C ⇒ D

;

⇒ B B ⇒ A1
cut ⇒ A1 C ⇒

weakseqa
Γ, Γ ′,2A1,2A2, ...,2An,3C ⇒ D

• (E2C
seq; negaCseq). Let Γ1 = A1, ..., An and Γ2 = C1, ..., Cm.

Γ1 ⇒ B B ⇒ A1 ... B ⇒ AnE2C
seq

Γ,2Γ1 ⇒ 2B

B,Γ2, D ⇒ ¬D ⇒ B ¬D ⇒ C1 ... ¬D ⇒ Cm
negbC

seq

Γ ′,2B,2Γ2,3D ⇒ E
cut

Γ, Γ ′,2Γ1,2Γ2,3D ⇒ E

;

Γ1 ⇒ B B,Γ2, D ⇒
cut

Γ1, Γ2, D ⇒
¬D ⇒ B B ⇒ Ai

(
cut

)n

i=1¬D ⇒ Ai ¬D ⇒ C1 ... ¬D ⇒ Cm
E2C

seq

Γ, Γ ′,2Γ1,2Γ2,3D ⇒ E

• (E2C
seq; strCseq). Let Γ1 = A1, ..., An and Γ2 = C1, ..., Cm. We have:

Γ1 ⇒ B B ⇒ A1 ... B ⇒ AnE2C
seq

Γ,2Γ1 ⇒ 2B

B,Γ2, D ⇒
strCseq

Γ ′,2B,2Γ2,3D ⇒ E
cut

Γ, Γ ′,2Γ1,2Γ2,3D ⇒ E

;

Γ1 ⇒ B B,Γ2, D ⇒
cut

Γ1, Γ2, D ⇒
strCseq

Γ,2Γ1,2Γ2,3D ⇒ E
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weaka ¬(2> ∧3⊥) weakb ¬(2⊥ ∧3>)
str

¬(A ∧B)

¬(2A ∧3B)nega ¬(2¬A ∧3A) negb ¬(2A ∧3¬A)

Fig. 8: Hilbert axioms and rules for interactions between 2 and 3.
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IE3
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IE2N3
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IE1CN2

IE1CN3

IE2C

IE3C
IMC IE2CN3

IE3CN3

IMCN3 IE2CN2

IE3CN2

IMCN2

Fig. 9: The lattice of intuitionistic non-normal bimodal logics.

Notably, the cut-free calculi in Theorem 5 are the C2-versions of the cut-
free calculi in Theorem 4, with the only exception of calculi G.IE2C∗ which
do not contain any rule corresponding to negseqb . This means that, once the
interaction rules are conveniently modified, the generalisation of the modal
rules to n principal formulas preserves cut elimination.

4.3 Hilbert systems

For each sequent calculus, we now define an equivalent Hilbert system. To this
purpose, in addition to the formulas of Figure 1, we also consider the axioms
and rules displayed in Figure 8. As before, the Hilbert systems are defined
by the set of modal axioms and rules that are added to IPL. The systems are
axiomatised as follows:

IE1 := E2 + E3 + weaka + weakb IE1C := IE1 + C2

IE2 := E2 + E3 + nega + negb IE2C := E2 + E3 + nega + C2

IE3 := E2 + E3 + str IE3C := IE3 + C2

IM := E2 + E3 + M2 + M3 + str IMC := IM + C2

Moreover, letting H∗ be any of the four systems listed above, we consider the
following additional systems:

H∗N3 := H∗ + N3 H∗N2 := H∗ + N2

The different systems and their relations are depicted in Figure 9. Notice
in particular that the systems IE2C, IE2CN3 and IE2CN2 are not extensions of,
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respectively, IE2, IE2N3 and IE2N2, as explained for the corresponding calculi
on p. 18.

Theorem 6 Let G.L be any sequent calculus for intuitionistic non-normal bi-
modal logics. Then G.L is equivalent to system L.

Proof We show that every axiom and rule of L is derivable in G.L. We only
consider here the interactions between the modalities, as the derivations of the
other axioms have been already given in the proof of Theorem 3.

⇒ > ⊥ ⇒ weakseqa
2>,3⊥ ⇒

L∧
2> ∧3⊥ ⇒

R¬⇒ ¬(2> ∧3⊥)

⇒ > ⊥ ⇒ weakseqb3>,2⊥ ⇒
L∧

3> ∧2⊥ ⇒
R¬⇒ ¬(3> ∧2⊥)

A,¬A⇒ ¬A⇒ ¬A
negseqa

2¬A,3A⇒
L∧

2¬A ∧3A⇒
R¬⇒ ¬(2¬A ∧3A)

A,¬A⇒ ¬A⇒ ¬A
negseqb2A,3¬A⇒

L∧
2A ∧3¬A⇒

R¬⇒ ¬(2A ∧3¬A)

⇒ ¬(A ∧B) A,B,¬(A ∧B)⇒
cut

A,B ⇒
strseq

2A,3B ⇒
L∧

2A ∧3B ⇒
R¬⇒ ¬(2A ∧3B)

Conversely, we prove that every rule of G.L is derivable in L. As before, we
only need to consider the interaction rules. In most cases the derivations are
easy to find, we give the following ones as examples.
• If L contains the axiom weaka, then the rule weakseqa is derivable. Assume

that `L A and `L B ⊃ ⊥. Then `L > ⊃ A and, since `L A ⊃ >, by E2 we have
`L 2A ⊃ 2>. Moreover, since `L ⊥ ⊃ B, by E3 we have `L 3B ⊃ 3⊥, hence
`L ¬3⊥ ⊃ ¬3B. By weaka we also have `L 2> ⊃ ¬3⊥. Thus `L 2A ⊃ ¬3B,
which gives `L ¬(2A ∧3B).
• If L contains the axiom negb, then the rule negseqb is derivable. Assume

`L ¬(A ∧ B) – that is `L B ⊃ ¬A – and `L ¬B ⊃ A. Then, by E3, `L 3B ⊃
3¬A. By negb we have `L 3¬A ⊃ ¬2A. Thus `L 3B ⊃ ¬2A, which gives
`L ¬(2A ∧3B).
• If L contains the axioms C2 and nega, then the rule negaCseq is derivable.

Assume `L A1 ∧ ...∧An ∧B ⊃ ⊥ and `L ¬B ⊃ A1, ..., `L ¬B ⊃ An. Then `L
A1∧...∧An ⊃ ¬B and `L ¬B ⊃ A1∧...∧An. By E2, `L 2(A1∧...∧An) ⊃ 2¬B,
and by considering axiom C2 n−1 times, `L 2A1∧...∧2An ⊃ 2(A1∧...∧An).
Moreover, by nega we have `L 2¬B ⊃ ¬3B. Then `L 2A1∧ ...∧2An∧3B ⊃
⊥.

5 Decidability, and other consequences of cut elimination

Analytic cut-free sequent calculi are a very powerful tool for proof analysis.
In this section, we take advantage of the admissibility of cut in all sequent
calculi defined in Sections 3 and 4 in order to prove additional properties of
the corresponding logics. Looking at the shape of the rules, we first observe
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that all calculi satisfy all requirements on intuitionistic non-normal modal
logics that we have initially assumed, i.e. that they are conservative over IPL
(R1); that they satisfy the disjunction property (R2); and that the duality
principles Dual2 and Dual3 are not derivable (R3). In a similar way, we prove
that all calculi are pairwise distinct, hence the lattices of intuitionistic non-
normal modal logics contain, respectively, 8 distinct monomodal 2-logics, 4
distinct monomodal 3-logics, and 24 distinct bimodal logics.

Some form of subformula property often follows from cut elimination. By
subformula property we mean as usual the property that given a root sequent
Γ ⇒ A of a derivation, every formula occurring in any sequent in any deriva-
tion of Γ ⇒ A is a subformula of a formula in Γ ⇒ A. For calculi containing
the rules negseqa (or negaCseq) and negseqb , we need to relax slightly the property
by considering ¬A as a “subformula” of 2A and 3A. As we shall see, in all
cases the subformula property is strong enough to provide, together with the
admissibility of contraction, a standard proof of decidability for G3 calculi.

We conclude the section with some further remarks about the logics that
we have defined, that in particular concern the relations between intuitionistic
and classical modal logics.

Fact 1. Every intuitionistic non-normal modal logic defined in Section 3 and
Section 4 satisfies the requirements R1, R2 and R3, the latter being only
relevant for bimodal logics.

Proof (R1) Every logic is conservative over IPL: the non-modal rules of each
sequent calculus are exactly the rules of G3ip.

(R2) Every logic satisfies the disjunction property: given a derivable se-
quent of the form ⇒ A ∨ B, since no modal rule has such a conclusion, the
last rule applied in its derivation is necessarily R∨. This has premiss ⇒ A or
⇒ B, which in turn is derivable.

(R3) For any system L, the axioms Dual2 and Dual3 are not derivable
in L for an arbitrary A. In particular, neither ¬2¬p ⊃ 3p, nor ¬3¬p ⊃ 2p
(instances of the right-to-left implication of Dual2 and Dual3) is derivable. For
instance, if we try to derive bottom-up the sequent ¬2¬p ⇒ 3p in G.L, the
only applicable rule would be L⊃. This has premiss ¬2¬p⇒ 2¬p. Again, L⊃ is
the only applicable rule, with the same sequent as premiss (or, if contained by
G.L, we could apply Nseq

2 to the non derivable sequent ⇒ ¬p). Since ¬2¬p⇒
2¬p is not an initial sequent, we have that ¬2¬p⇒ 3p is not derivable. The
situation is analogous for ¬3¬p⇒ 2p.

Theorem 7 The lattice of intuitionistic non-normal bimodal logics contains
24 distinct systems.

Proof We leave to the reader to check that, given two logics L1 and L2 of
the lattice, we can always find some formulas (or rules) that are derivable
in L1 and not in L2, or vice versa. This can be easily done by considering
the corresponding calculi G.L1 and G.L2. In particular, if L1 is stronger than
L2, then the characteristic axiom of L1 is not derivable in L2. If instead L1
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and L2 are incomparable, then they both have some characteristic axioms (or
rules) that are not derivable in the other. For the rule str, we can consider the
counterexample to cut elimination provided in Example 2.

Definition 3 (Strict subformula and negated subformula) For any for-
mulas A and B, we say that A is a strict subformula of B if A is a subformula
of B and A 6≡ B. Moreover, we say that A is a negated subformula of B if
there is a formula C such that C is a strict subformula of B and A ≡ ¬C.

Definition 4 (Subformula property and negated subformula prop-
erty) We say that a sequent calculus G.L enjoys the subformula property if
all formulas in any derivation are subformulas of the endsequent. We say that
G.L enjoys the negated subformula property if all formulas in any derivation
are either subformulas or negated subformulas of the endsequent.

The following result is an immediate consequence of cut elimination:

Theorem 8 Any sequent calculus different from G.IE2(C,N3,N2) enjoys the
subformula property. Moreover, calculi G.IE2(C,N3,N2) enjoy the negated sub-
formula property.

Given that the calculi enjoy the subformula property, we can extend to
our logics the proof of decidability for G3ip given in Troelstra and Schwichten-
berg [41] and thereby obtain a proof of decidability for our calculi. Schemati-
cally, the argument is as follows: all rules are analytical, and the premisses of
each rule — with the exception of L⊃ — have a smaller complexity than the
conclusion. In the same way of [41], the application of L⊃ can be controlled
by an easy loop-checking. It turns out that given a root sequent Γ ⇒ A, every
derivation of Γ ⇒ A is finite and there are only a finite number of possi-
ble derivations of it. This implies decidability: the decision procedure consists
trivially in checking all possible derivations.

Theorem 9 (Decidability) For any intuitionistic non-normal modal logic
defined in Section 3 and Section 4, it is decidable whether a given formula is
derivable.

We conclude this section with some remarks about the logics we have de-
fined. Notice that there are three different systems — that is IE1, IE2, IE3 —
that could be considered as counterparts of the same classical logic — that is
logic E — and the same holds for some of their extensions. This is essentially
due to the loss of duality between 2 and 3, that allows us to consider interac-
tions of different strengths that are equally derivable in classical logic but are
not intuitionistically equivalent. It is normally expected that an intuitionistic
modal logic is strictly weaker than the corresponding classical modal logic,
essentially because IPL is weaker than CPL. In this respect it is not true that
IE3 is a counterpart of classical E. Indeed, the rule str is classically equivalent
to Mon2, and hence not derivable in E. At the same time, however, it would
be unnatural to consider IE3 as corresponding to classical M, as neither M2

nor M3 is derivable.
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We see therefore that the picture of systems that emerge from a certain
set of logic principles is richer in the intuitionistic case than in the classical
one. The case of IE3 also suggests that assuming an intuitionistic base not
only allows us to make subtle distinctions between principles that are not
distinguishable in classical logic, but also gives us the possibility to investigate
systems that in a sense lie between two different classical logics, and do not
correspond essentially to any of the two.

6 Semantics

In this section, we present a semantics for all systems defined in Sections 3
and 4. As we shall see, our semantics represents a general framework for in-
tuitionistic modal logics, that is able to capture modularly further intuition-
istic non-normal modal logics such as CK and CCDLp. Models are obtained
by combining intuitionistic Kripke models and neighbourhood models — see
Definition 1 — in the following way:

Definition 5 A Coupled Intuitionistic Neighbourhood Model (CINM) is a tu-
pleM = 〈W,�,N2,N3,V〉, whereW is a non-empty set, � is a preorder over
W, V is a hereditary valuation function W −→ P(Atm) (i.e. w � v implies
V(w) ⊆ V(v)), and N2, N3 are two neighbourhood functionsW −→ P(P(W))
such that:

w � v implies N2(w) ⊆ N2(v) and N3(w) ⊇ N3(v) (hp).

Functions N2 and N3 can be supplemented, closed under intersection, or con-
tain the unit — cf. properties in Definition 1. Moreover, let us define

−α = {w ∈ W | for all v � w, v /∈ α}.

Then N2 and N3 can be related in the following ways:

For all w ∈ W, N2(w) ⊆ N3(w) Weak interaction (weakInt);
If −α ∈ N2(w), then W \ α ∈ N3(w) Negation closure int_a (negInta);
If α ∈ N2(w), then W \−α ∈ N3(w) Negation closure int_b (negIntb);
If α ∈ N2(w) and α ⊆ β, then β ∈ N3(w) Strong interaction (strInt).

The forcing relation w 
 A associated to CINMs is defined as follows:

w 
 p iff p ∈ V(w);
w 6
 ⊥;
w 
 B ∧ C iff w 
 A and w 
 B;
w 
 B ∨ C iff w 
 A or w 
 B;
w 
 B ⊃ C iff for all v � w, v 
 B implies v 
 C;
w 
 2B iff [B] ∈ N2(w);
w 
 3B iff W \ [B] /∈ N3(w).

CINMs for monomodal logics 2-IE∗ and 3-IE∗ are defined by removing, re-
spectively, N3 or N2 from the above definition (as well as the forcing condition
for the lacking modality), and are called 2-INMs and 3-INMs.
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As usual, given a class C of CINMs, we say that a formula A is satisfiable
in C if there areM ∈ C and w ∈ M such that w 
 A, and that A is valid in
C if for allM∈ C and w ∈M we have that w 
 A.

Observe that we are taking for ⊃ the satisfaction clause of intuitionistic
Kripke models, while for 2 and 3 we are taking the satisfaction clauses of clas-
sical neighbourhood models. In contrast with classical neighbourhood models,
however, our models are endowed with two neighbourhood functions N2 and
N3 rather than one. In this way, we can consider different relations between
the two functions as given in the previous definition. Intuitively, these con-
ditions correspond to the interaction axioms and rules. Interestingly, in the
context of classical deontic logic, a neighbourhood semantics with separate
neighbourhood functions for the two deontic modalities has been considered
in Anglberger et al. [1]. A different neighbourhood semantics for an intuitionis-
tic non-normal modal logic is defined in Kojima [24]. We shall discuss Kojima’s
semantics in Section 7.

The way functions N2 and N3 are related to the order � by the condition
(hp) guarantees that CINMs preserve the hereditary property of intuitionistic
Kripke models:

Proposition 4 CINMs satisfy the hereditary property: for all A ∈ L, if w 
 A
and w � v, then v 
 A.

Proof By induction on A. For the non-modal cases the proof is standard. For
A ≡ 2B,3B it is immediate by (hp).

Depending on its axioms, to each system are associated models with specific
properties, as summarised in the following table:

M2 N2 is supplemented weaka + weakb weakInt
N2 N2 contains the unit nega negInta
C2 N2 is closed under ∩ negb negIntb
M3 N3 is supplemented str strInt
N3 N3 contains the unit

In case of supplemented models — that is, when both N2 and N3 are sup-
plemented — it suffices to consider weakInt as the semantic condition corre-
sponding to any interaction axiom (or rule). Indeed, it is easy to verify that
whenever a modelM satisfies weakInt, and N2 or N3 is supplemented, then
M also satisfies negInta, negIntb, and strInt.

Given the semantic properties of the above table, we have that 2-INMs
coincide essentially with the neighbourhood spaces by Goldblatt [17], although
in that work the property of containing the unit is not considered. The only
difference is that in Goldblatt’s spaces the neighbourhoods are assumed to be
closed with respect to the order, that is:

If α ∈ N2(w), v ∈ α and v � u, then u ∈ α (�-closure).
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As already observed by Goldblatt, however, this property is irrelevant from
the point of view of the validity of formulas, as a formula A is valid in 2-INMs
(that are supplemented, closed under intersection, contain the unit) if and only
if it is valid in the corresponding 2-INMs that satisfy also the �-closure. It is
easy to verify that the same equivalence holds for CINMs for bimodal logics
when considering the �-closure only for the neighbourhoods in N2 (and not
for those in N3).

The soundness of intuitionistic non-normal modal logics with respect to
the corresponding CINMs can be proved easily.

Theorem 10 (Soundness) Every intuitionistic non-normal modal logic is
sound with respect to the corresponding CINMs.

Proof It is easy to prove that a given axiom is valid whenever the corresponding
property is satisfied. For nega and negb notice that −[A] = [¬A].

We now prove completeness of the Hilbert systems, whence of the sequent
calculi, by the canonical model construction. In the following, let L be any
intuitionistic non-normal modal logic and L be the corresponding language.
We call L-prime any setX of formulas of L which is consistent (X 6`L ⊥), closed
under derivation (X `L A implies A ∈ X) and such that if (A∨B) ∈ X, then
A ∈ X or B ∈ X. For all A ∈ L, we denote with ↑prA the class of prime sets
X such that A ∈ X. The standard properties of prime sets hold, in particular:

Lemma 1 (a) If X 6`L A ⊃ B, then there is a L-prime set Y such that
X ∪ {A} ⊆ Y and B /∈ Y .
(b) For any A,B ∈ L, ↑prA ⊆↑prB implies `L A ⊃ B.

As in the classical case (cf. Chellas [6]), for the proof of completeness we
need to consider separately monotonic and non-monotonic systems. We first
consider canonical models for non-monotonic systems, then we define canonical
models enjoying supplementation for monotonic ones.

Definition 6 (Canonical models for non-monotonic systems) Let L be
any system not containing axioms M2 and M3. The canonical modelMc for
L is defined as the tuple 〈Wc,�c,N c

2,N c
3,Vc〉, where:

• Wc is the class of L-prime sets;
• for all X,Y ∈ Wc, X �c Y if and only if X ⊆ Y ;
• N c

2(X) = {↑prA | 2A ∈ X};
• N c

3(X) = P(Wc) \ {Wc\ ↑prA | 3A ∈ X};
• Vc(X) = {p ∈ L | p ∈ X}.

Notice that the canonical modelMc is well defined, in particular it follows
from the definition that X �c Y implies both N c

2(X) ⊆ N c
2(Y ) and N c

3(X) ⊇
N c

3(Y ). We prove the following lemma.

Lemma 2 Let L be any non-monotonic system andMc = 〈Wc,�c,N c
2,N c

3,Vc〉
be the canonical model for L. Then for all X ∈ Wc and all A ∈ L we have
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X 
 A iff A ∈ X.

Moreover: (i) If L contains N2, then N c
2 contains the unit;

(ii) If L contains C2, then N c
2 is closed under intersection;

(iii) If L contains N3, then N c
3 contains the unit;

(iv) If L contains weaka and weakb, thenMc is weakInt;
(v) If L contains nega, thenMc is negInta;
(vi) If L contains negb, thenMc is negIntb;
(vii) If L contains str, thenMc is strInt.

Proof By induction on A we prove that X 
 A if and only if A ∈ X. If
A ≡ p, ⊥, B ∧ C, B ∨ C, or B ⊃ C, the proof is immediate.

If A ≡ 2B: for the converse implication, assume 2B ∈ X. Then by def-
inition ↑prB ∈ N c

2(X), and by inductive hypothesis, ↑prB = [B]Mc , there-
fore X 
 2B. For the direct implication, assume X 
 2B. Then we have
[B]Mc ∈ N c

2(X), and, by inductive hypothesis, [B]Mc =↑prB. By definition,
this means that there is C ∈ L such that 2C ∈ X and ↑prC =↑prB. Then,
by Lemma 1, `L C ⊃ B and `L B ⊃ C. Thus by E2, `L 2C ⊃ 2B, and, by
closure under derivation, 2B ∈ X.

If A ≡ 3B: for the converse implication, assume 3B ∈ X. Then by def-
inition Wc\ ↑prB /∈ N c

3(X), and by inductive hypothesis, ↑prB = [B]Mc ,
therefore X 
 3B. For the direct implication, assume X 
 3B. Then we have
Wc \ [B]Mc /∈ N c

3(X), and, by inductive hypothesis, Wc\ ↑prB /∈ N c
3(X).

This means that there is C ∈ L such that 3C ∈ X and ↑prC =↑prB. Thus,
`L C ⊃ B and `L B ⊃ C, therefore by E3, `L 3C ⊃ 3B. By closure under
derivation, we obtain that 3B ∈ X.

Claims (i)–(vii) are proved as follows: (i) 2> ∈ X for every X ∈ Wc. Then
by definition Wc =↑pr> ∈ N c

2(X).
(ii) Assume α, β ∈ N c(X). Then there are A,B ∈ L such that 2A,2B ∈

X, α =↑prA and β =↑prB. By closure under derivation, 2(A ∧ B) ∈ X, and,
by definition, ↑pr(A ∧B) ∈ N c

2(X), where ↑pr(A ∧B) =↑prA∩ ↑prB = α ∩ β.
(iii) ¬3⊥ ∈ X for every X ∈ Wc, thus by consistency, 3⊥ /∈ X. If

Wc\ ↑pr⊥ /∈ N c
2(X), then there is A ∈ L such that ↑prA =↑pr⊥ and 3A ∈ X,

that implies 3⊥ ∈ X. Therefore Wc =Wc\ ↑pr⊥ ∈ N c
2(X).

(iv) Assume by contradiction that α ∈ N c
2(X) and α /∈ N c

3(X). Then
there are A,B ∈ L such that α =↑prA, α = Wc\ ↑prB, and 2A,3B ∈ X,
therefore ↑prA =Wc\ ↑prB. By the properties of prime sets, this implies that
`L ¬(A ∧ B) and `L A ∨ B, and by the disjunction property, `L A or `L B.
If we assume `L A, then `L A ⊃⊂ > and `L B ⊃⊂ ⊥. Therefore by E2

and E3, `L 2A ⊃ 2> and `L 3B ⊃ 3⊥, thus by closure under derivation,
2>,3⊥ ∈ X. But ¬(2>∧3⊥) ∈ X, in contradiction with the consistency of
prime sets. If we now assume `L B, then `L B ⊃⊂ > and `L A ⊃⊂ ⊥. We
obtain an analogous contradiction considering ¬(3> ∧2⊥).

(v) By contraposition, assume that Wc \α /∈ N c
3(X). Then there is A ∈ L

such that Wc \ α = Wc\ ↑prA and 3A ∈ X. Thus α =↑prA, and by nega,
2¬A /∈ X. Therefore ↑pr¬A /∈ N c

2(X) — otherwise there would be 2B ∈ X
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such that ↑pr¬A =↑prB, which implies 2¬A ∈ X. Since ↑pr¬A = − ↑prA =
−α, the claim holds.

(vi) Assume α ∈ N c
2(X). Then there is A ∈ L such that α =↑prA and 2A ∈

X. Thus, by negb and consistency of X, 3¬A /∈ X. Therefore Wc\ ↑pr¬A ∈
N c

3(X) (otherwise there would be B ∈ L such that ↑prB =↑pr¬A and 3B ∈
X, which implies 3¬A ∈ X). Since ↑pr¬A = − ↑prA (↑pr¬A = [¬A]Mc =
−[A]Mc = − ↑prA) and − ↑prA = −α, the claim holds.

(vii) Assume by contradiction that α ∈ N c
2(X), α ⊆ β, and β /∈ N c

3(X).
Then there are A,B ∈ L such that α =↑prA, β =Wc\ ↑prB and 2A,3B ∈ X.
Moreover, ↑prA ⊆ Wc\ ↑prB, which implies ↑prA∩ ↑prB = ∅. Thus `L ¬(A ∧
B); and by str we have `L ¬(2A∧3B), in contradiction with the consistency
of X.

We now define canonical models and prove an analogous lemma for mono-
tonic systems. We shorten the proof by considering, instead of M2 and M3,
the syntactically equivalent rules Mon2 and Mon3.

Definition 7 (Canonical models for monotonic systems) Let L be any
system containing axioms M2 and M3. The canonical modelMc

+ for L is the
tuple 〈Wc,�c,N+

2 ,N+
3 ,Vc〉, where Wc,�c,Vc are defined as in Definition 6,

and:
N+

2 (X) = {α ⊆ Wc | there is A ∈ L s.t. 2A ∈ X and ↑prA ⊆ α};
N+

3 (X) = P(Wc) \ {α ⊆ Wc | there is A ∈ L s.t. 3A ∈ X and α ⊆
Wc\ ↑prA}.

Lemma 3 Let L be any monotonic system andMc
+ = 〈Wc,�c,N+

2 ,N+
3 ,Vc〉

be the canonical model for L. Then X 
 A if and only if A ∈ X. Moreover,
claims (i)–(iii) of Lemma 2 still hold. Finally: (iv), if L contains str, thenMc

+

is weakInt.

Proof Observe that both N+
2 and N+

3 are supplemented. The proof is by
induction on A, we only show the modal cases.

If A ≡ 2B: for the converse implication, assume that 2B ∈ X. Then
by definition ↑prB ∈ N+

2 (X), and by inductive hypothesis, ↑prB = [B]Mc
+
,

therefore X 
 2B. For the direct implication, assume that X 
 2B. Then
we have [B]Mc

+
∈ N+

2 (X), and, by inductive hypothesis, [B]Mc
+

= ↑prB. By
definition, this means that there is C ∈ L such that 2C ∈ X and ↑prC ⊆↑prB,
which then implies `L C ⊃ B. Thus, by Mon2, `L 2C ⊃ 2B, and, by closure
under derivation, 2B ∈ X.

If A ≡ 3B: for the converse implication, assume that 3B ∈ X. Then by
definition Wc\ ↑prB /∈ N+

3 (X), and by inductive hypothesis, ↑prB = [B]Mc
+
,

therefore X 
 3B. For the direct implication, assume X 
 3B. Then we have
Wc \ [B]Mc /∈ N+

3 (X), and, by inductive hypothesis, Wc\ ↑prB /∈ N+
3 (X).

This means that there is C ∈ L such that 3C ∈ X andWc \B ⊆ Wc \C, that
is ↑prC ⊆↑prB. Thus, `L C ⊃ B, therefore by E3, `L 3C ⊃ 3B. By closure
under derivation we then have 3B ∈ X.
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Claims (i)–(iii) are proved similarly to the claims (i)–(iii) in Lemma 2.
For (iv): By contradiction, assume that α ∈ N+

2 (X) and α /∈ N+
3 (X). Then

there are A,B ∈ L such that ↑prA ⊆ α, α ⊆ Wc\ ↑prB, and 2A,3B ∈ X.
Therefore ↑prA ⊆ Wc\ ↑prB, which implies `L ¬(A∧B). By str we then have
¬(2A ∧3B) ∈ X, in contradiction with the consistency of X.

Theorem 11 (Completeness) Every intuitionistic non-normal bimodal logic
is complete with respect to the corresponding CINMs.

Proof Assume that 6`L A. Then 6`L > ⊃ A, thus, by Lemma 1, there is an
L-prime set X such that A /∈ X. By definition, X belongs to the canonical
modelMc for L (resp.Mc

+ for monotonic logics), and by Lemma 2,Mc, X 6
 A
(Mc

+, X 6
 A). By the properties of Mc (Mc
+) we obtain completeness of L

with respect to the corresponding models.

It can be easily verified that by removing N c
3 (resp. N+

3 ) or N c
2 (resp.

N+
2 ) from the definition of Mc (resp. Mc

+), we obtain analogous results for
monomodal logics. Therefore we have:

Theorem 12 Every intuitionistic non-normal monomodal logic is complete
with respect to the corresponding CINMs.

6.1 Finite model property and decidability

We have seen that all intuitionistic non-normal modal logics defined in Section
3 and 4 are sound and complete with respect to a certain class of CINMs. Here
we prove that all logics have the finite model property (FMP), meaning that
if a formula is satisfiable, then it has a finite model. Since finite models can
be enumerated, FMP implies that the logics are decidable, thus providing a
semantic proof of decidability which is alternative to the syntactic one pre-
sented in Section 5. As usual, FMP is based on the filtration technique. Given
a model, this technique allows us to define a finite model which is equivalent
to the initial one with respect to a finite set of formulas. The proofs are given
explicitly for bimodal logics, while the simpler proofs for monomodal logics
can be easily extracted.

Given a CINM M and a set Φ of formulas of L that is closed under sub-
formulas, we define the equivalence relation ∼ on W as follows:

w ∼ v iff for all A ∈ Φ, w 
 A iff v 
 A.

For any w ∈ W and α ⊆ W, we denote with w∼ the equivalence class contain-
ing w, and with α∼ the set {w∼ | w ∈ α} (thus in particular [A]∼M is the set
{w∼ | w ∈ [A]M}).

Definition 8 Let M = 〈W,�,N2,N3,V〉 be a CINM and Φ be a set of
formulas of L closed under subformulas. A filtration of M through Φ (or Φ-
filtration) is any CINMM∗ = 〈W∗,�∗,N ∗2,N ∗3,V∗〉 such that:
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– W∗ = {w∼ | w ∈ W};
– w∼ �∗ v∼ iff for all A ∈ Φ,M, w 
 A impliesM, v 
 A;
– for all 2A ∈ Φ, [A]∼M ∈ N ∗2(w∼) iff [A]M ∈ N2(w);
– for all 3A ∈ Φ, W∗ \ [A]∼M ∈ N ∗3(w∼) iff W \ [A]M ∈ N3(w);
– for all p ∈ Φ, p ∈ V∗(w∼) iff p ∈ V(w).

Observe that the modelM∗ is well-defined: for all 2A,3B, p ∈ Φ we have
that w ∼ v implies: (i) [A]∼M ∈ N ∗2(w∼) iff [A]∼M ∈ N ∗2(v∼); (ii) W∗ \ [B]∼M ∈
N ∗3(w∼) iff W∗ \ [B]∼M ∈ N ∗3(v∼); and (iii) p ∈ V∗(w∼) iff p ∈ V∗(v∼).
Moreover, the conditions of CINMs are respected: (iv) �∗ is a preorder; (v)
V∗ is hereditary; (vi) if w∼ �∗ v∼ and 2A ∈ Φ, then [A]∼M ∈ N ∗2(w∼) implies
[A]∼M ∈ N ∗2(v∼); (vii) if w∼ �∗ v∼ and 3B ∈ Φ, then W∗ \ [B]∼M ∈ N ∗3(v∼)
implies W∗ \ [B]∼M ∈ N ∗3(w∼); and (viii) for all α ⊆ W∗, α ∈ N ∗2(w∼) implies
α ∈ N ∗3(w∼).

Lemma 4 (Filtration lemma) For every formula A ∈ Φ,

M∗, w∼ 
 A iff M, w 
 A.

Proof Notice that it is equivalent to prove that [A]M∗ = [A]∼M. The proof is
by induction on A. For A ≡ p, ⊥, B ∧ C, or B ∨ C, the proof is immediate.

A ≡ B ⊃ C. Assume M, w 6
 B ⊃ C. Then there is v � w such that
M, v 
 B andM, v 6
 C. By inductive hypothesisM∗, v∼ 
 B andM∗, v∼ 6

C. Moreover, by definition of �∗ and the fact thatM satisfies the hereditary
property, w∼ �∗ v∼. ThereforeM∗, w∼ 6
 B ⊃ C. Now assumeM∗, w∼ 6
 B ⊃
C. Then there is v∼ ∈ W∗ such that w∼ �∗ v∼,M∗, v∼ 
 B andM∗, v∼ 6
 C.
By inductive hypothesis M, v 
 B and M, v 6
 C, thus M, v 6
 B ⊃ C. By
definition of �∗ we then haveM, w 6
 B ⊃ C.

A ≡ 2B.M∗, w∼ 
 2B iff [B]M∗ ∈ N ∗2(w∼) iff (i.h.) [B]∼M ∈ N ∗2(w∼) iff
[B]M ∈ N2(w) iffM, w 
 2B.

A ≡ 3B.M∗, w∼ 
 3B iff W∗ \ [B]M∗ /∈ N ∗3(w∼) iff (i.h.) W∗ \ [B]∼M /∈
N ∗3(w∼) iff W \ [B]M /∈ N3(w) iffM, w 
 3B.

Lemma 5 Let M∗ be a Φ-filtration of M. (i) If N2 contains the unit and
2> ∈ Φ, then N ∗2 contains the unit. (ii) If N3 contains the unit and 3⊥ ∈ Φ,
then N ∗3 contains the unit.

Proof The claims follow from Definition 8 and Lemma 4, for instance if W =
[>]M ∈ N2(w), then, since 2> ∈ Φ, we have [>]∼M = [>]M∗ =W∗ ∈ N ∗2(w∼).

Whereas filtrations are sufficient for some basic models, for the other cases
we must consider a finer notion that, following Chellas [6], we call finest fil-
tration.

Definition 9 We call finest Φ-filtration any Φ-filtrationM∗ ofM such that:

N ∗2(w∼) = {[A]∼M | 2A ∈ Φ and [A]M ∈ N2(w)}; and
N ∗3(w∼) = P(W∗) \ {W∗ \ [A]∼M | 3A ∈ Φ and W \ [A]M /∈ N3(w)}.
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Moreover, letM◦ = 〈W∗,�∗,N ◦2,N ◦3,V∗〉 be a CINM where W∗, �∗ and V∗
are as inM∗. We say that:
• M◦ is the supplementation ofM∗ if:

α ∈ N ◦2(w∼) iff there is β ∈ N ∗2(w∼) s.t. β ⊆ α;
α /∈ N ◦3(w∼) iff there is β /∈ N ∗3(w∼) s.t. α ⊆ β.

• M◦ is the intersection closure ofM∗ if N ◦3(w∼) = N ∗3(w∼), and
α ∈ N ◦2(w∼) iff there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1 ∩ ... ∩ αn = α.

• M◦ is the quasi-filtering ofM∗ if:
α ∈ N ◦2(w∼) iff there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1 ∩ ... ∩ αn ⊆ α;
α /∈ N ◦3(w∼) iff there is β /∈ N ∗3(w∼) s.t. α ⊆ β.

It is easy to verify that the supplementation of a modelM is supplemented,
its intersection closure is closed under intersection, and its quasi-filtering is
both supplemented and closed under intersection.

Lemma 6 Let M∗ be a finest Φ-filtration of M. (i) If M is weakInt, then
M∗ is weakInt. (ii) IfM is strInt, thenM∗ is strInt. (iii) IfM is negInta
and Φ is such that ¬A ∈ Φ for all 3A ∈ Φ, thenM∗ is negInta. (iv) IfM is
negIntb and Φ is such that ¬A ∈ Φ for all 2A ∈ Φ, thenM∗ is negIntb.

Proof (i) Assume by contradiction that α ∈ N ∗2(w∼) and α /∈ N ∗3(w∼). Then
α = [A]∼M for a A ∈ L such that 2A ∈ Φ and [A]M ∈ N2(w). Moreover
α = W∗ \ [B]∼M for a B ∈ L such that 3B ∈ Φ and W \ [B]M /∈ N3(w).
Thus [A]∼M = W∗ \ [B]∼M, which implies [A]M = W \ [B]M (w ∈ [A]M iff
w∼ ∈ [A]∼M iff w∼ ∈ W∗ \ [B]∼M iff w ∈ W \ [B]M). Then, sinceM is weakInt,
W \ [B]M ∈ N3(w), which gives a contradiction.

(ii) Assume by contradiction that α ∈ N ∗2(w∼), α ⊆ β and β /∈ N ∗3(w∼).
Then α = [A]∼M for a A ∈ L such that 2A ∈ Φ and [A]M ∈ N2(w). Moreover
β = W∗ \ [B]∼M for a B ∈ L such that 3B ∈ Φ and W \ [B]M /∈ N3(w).
Thus [A]∼M ⊆ W∗ \ [B]∼M, which implies [A]M ⊆ W \ [B]M. Then, sinceM is
strInt, W \ [B]M ∈ N3(w), which gives a contradiction.

(iii) Assume by contradiction that −α ∈ N ∗2(w∼) and W∗ \ α /∈ N ∗3(w∼).
Then there is 2A ∈ Φ s.t. −α = [A]∼M∗ and [A]M ∈ N2(w). In addition
there is 3B ∈ Φ s.t. W∗ \ α = W∗ \ [B]∼M∗ and W \ [B]M /∈ N3(w). As a
consequence we have [A]∼M∗ = −[B]∼M∗ = [¬B]∼M∗ . Having ¬B ∈ Φ, by the
filtration lemma we obtain [A]M = [¬B]M. Then [¬B]M = −[B]M ∈ N2(w).
Finally, by negInta W \ [B]M ∈ N3(w), which gives a contradiction.

(iv) Assume by contradiction that α ∈ N ∗2(w∼) and W∗ \ −α /∈ N ∗3(w∼).
Then there is 2A ∈ Φ s.t. α = [A]∼M∗ and [A]M ∈ N2(w). In addition there
is 3B ∈ Φ s.t. W∗ \ −α = W∗ \ [B]∼M∗ and W \ [B]M /∈ N3(w). As a
consequence we have [B]∼M∗ = −[A]∼M∗ = [¬A]∼M∗ . Having ¬A ∈ Φ, by the
filtration lemma we obtain [B]M = [¬A]M. Since M is negIntb, we have
W \−[A]M =W \ [¬A]M =W \ [B]M ∈ N3(w), which gives a contradiction.

Lemma 7 LetM,M∗ andM◦ be CINMs, whereM∗ is a finest Φ-filtration
ofM for a set Φ of formulas that is closed under subformulas. We have:
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(i) If M is supplemented and weakInt, and M◦ is the supplementation of
M∗, thenM◦ is weakInt and is a Φ-filtration ofM.

(ii) IfM is closed under intersection and weakInt, andM◦ is the intersection
closure ofM∗, thenM◦ is weakInt and is a Φ-filtration ofM.

(iii) IfM is supplemented, closed under intersection, and weakInt, andM◦ is
the quasi-filtering ofM∗, thenM◦ is weakInt and is a Φ-filtration ofM.

(iv) If M is closed under intersection and strInt, and M◦ is the intersection
closure ofM∗, thenM◦ is strInt and is a Φ-filtration ofM.

(v) IfM is closed under intersection and negInta, andM◦ is the intersection
closure of M∗, and Φ is such that ¬A ∈ Φ for all 3A ∈ Φ, then M◦ is
negInta and is a Φ-filtration ofM.

Proof The proofs of (i)–(iv) are very similar to each other. We prove (iii).
Firstly we show by contradiction that M◦ is weakInt. Assume α ∈ N ◦2(w∼)
and α /∈ N ◦3(w∼). Then there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1 ∩ ... ∩ αn ⊆ α;
and there is β /∈ N ∗3(w∼) s.t. α ⊆ β. By definition, this means that there are
2A1, ...,2An ∈ Φ s.t. α1 = [A1]

∼
M, ..., αn = [An]

∼
M, and [A1]M, ..., [An]M ∈

N2(w). Moreover, there is 3B ∈ Φ s.t. β =W∗\[B]∼M andW\[B]M /∈ N3(w).
As a consequence, we also have [A1]

∼
M∩ ...∩ [An]

∼
M ⊆ W∗ \ [B]∼M. SinceM∗ is

a Φ-filtration ofM, by the filtration lemma this implies [A1]M∩ ...∩ [An]M ⊆
W \ [B]M. Then by intersection closure of N2, [A1]M ∩ ... ∩ [An]M ∈ N2(w),
and by its supplementation,W \ [B]M ∈ N2(w). Finally, sinceM is weakInt,
W \ [B]M ∈ N3(w), which gives a contradiction.

We now prove that M◦ is a Φ-filtration of M. Let 2A ∈ Φ. If [A]M ∈
N2(w), then [A]∼M ∈ N ∗2(w∼), and also [A]∼M ∈ N ◦2(w∼). Now assume that
[A]∼M ∈ N ◦2(w∼). Then there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1∩ ...∩αn ⊆ [A]∼M.
By definition, this means that there are 2A1, ...,2An ∈ Φ s.t. α1 = [A1]

∼
M,

..., αn = [An]
∼
M, and [A1]M, ..., [An]M ∈ N2(w). Then, since M∗ is a Φ-

filtration of M, [A1]M ∩ ... ∩ [An]M ⊆ [A]M. By intersection closure of N2,
[A1]M ∩ ... ∩ [An]M ∈ N2(w), then by supplementation, [A]M ∈ N2(w).

Now let 3A ∈ Φ. If W \ [A]M /∈ N3(w), then W∗ \ [A]∼M /∈ N ∗3(w∼), and
also W∗ \ [A]∼M /∈ N ◦3(w∼). Now assume W∗ \ [A]∼M /∈ N ◦3(w∼). Then there
is β /∈ N ∗3(w∼) s.t. W∗ \ [A]∼M ⊆ β. By definition, β = W∗ \ [B]∼M for a
3B ∈ Φ s.t. W \ [B]M /∈ N3(w). Since M∗ is a Φ-filtration of M, we have
W \ [A]M ⊆ W \ [B]M. Then by supplementation, W \ [A]M /∈ N3(w).

(v) Assume by contradiction that −α ∈ N ◦2(w∼) and W∗ \ α /∈ N ◦3(w∼).
Then there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1∩...∩αn = −α; in additionW∗\α /∈
N ∗3(w∼). By definition there are 2A1, ...,2An,3B ∈ Φ s.t. α1 = [A1]

∼
M, ...,

αn = [An]
∼
M, and [A1]M, ..., [An]M ∈ N2(w); moreover W∗ \ α = W∗ \ [B]∼M

and W \ [B]M /∈ N3(w). Thus [A1]
∼
M ∩ ...∩ [An]

∼
M = −[B]∼M = [¬B]∼M. Since

M∗ is a Φ-filtration of M and ¬B ∈ Φ, by the filtration lemma this implies
[A1]M ∩ ... ∩ [An]M = [¬B]M = −[B]M. But by intersection closure of N2,
[A1]M∩...∩[An]M ∈ N2(w), then by negInta,W\[B]M ∈ N3(w), which gives
a contradiction. Similarly to (iii) we can also prove thatM◦ is a Φ-filtration
ofM.
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Theorem 13 If a formula A is satisfiable in a CINMM = 〈W,�,N2,N3,V〉,
then A is satisfiable in a CINMM′ = 〈W ′,�′,N ′2,N ′3,V ′〉, where N ′2 and N ′3
have the same properties of N2 and N3, and W ′ is finite.

Proof The proof is standard, by taking Φ = Sbf(A) ∪ Ψ , where Sbf(A) is the
set of subformulas of A, and Ψ depends on the properties ofM. In particular,
Ψ contains 3⊥,⊥ if N3 contains the unit; it contains 2>,>,⊥ if N2 contains
the unit; it contains ¬B for all 3B ∈ Sbf(A) if M is negInta (and not
strInt); and it contains ¬B for all 2B ∈ Sbf(A) if M is negIntb (and not
strInt). Moreover, depending on the properties of M we consider the right
transformationM′ ofM. Observe that the set Φ is always finite, which implies
that any Φ-filtrationM′ ofM is a finite model.

Corollary 1 Any intuitionistic non-normal mono- or bi-modal logic enjoys
the finite model property.

7 Constructive K and propositional CCDL

We have seen in Section 6 that 2-INMs coincide essentially with Goldblatt’s
neighbourhood spaces. In Fairtlough and Mendler [9], Goldblatt’s spaces are
considered in order to provide a semantics for Propositional Lax Logic (PLL).
PLL is an intuitionistic monomodal logic which is motivated by hardware ver-
ification, and is non-normal as it fails to validate the rule of necessitation.

In this section we show that the framework of CINMs is general enough
to cover two additional intuitionistic non-normal bimodal logics, namely CK
(for “constructive K”) by Bellin et al. [4], and the propositional fragment of
Wijesekera’s first-order logic CCDL (Wijesekera [42]), that we call CCDLp. In
particular, we show that the two systems can be captured in our framework
by considering a very simple additional property.

Different possible worlds semantics have already been proposed for the two
logics. In particular, the logic CCDLp has both a relational semantics (Wijesek-
era [42]) and a neighbourhood semantics (Kojima [24]), whereas a relational
semantics for CK has been given in Mendler and de Paiva [33] by adding in-
consistent worlds to the relational models for CCDLp. The fact that CK and
CCDLp fit in our framework is interesting for two reasons. On the one hand, it
shows the power of our neighbourhood semantics, that can accommodate in a
natural way many systems. On the other hand, it shows that CK and CCDLp

can be obtained as extensions of weaker logics in a modular way. As a further
advantage, observe that this semantics is standard also for CK, as our models
do not need inconsistent worlds.

In the following, we first present the logics CK and CCDLp by giving both
their axiomatisations and sequent calculi. Then we define their CINMs and
prove soundness and completeness, as well as the finite model property. Finally,
we present their pre-existing possible worlds semantics and prove directly their
equivalence with CINMs.
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7.1 Hilbert systems and sequent calculi

Logic CK (Bellin et al. [4]) is defined as a Hilbert system by adding to IPL the
following axioms and rules:

K2 2(A ⊃ B) ⊃ (2A ⊃ 2B) K3 2(A ⊃ B) ⊃ (3A ⊃ 3B)
A

Nec
2A

.

The logic CCDLp is the extension of CK with axiom N3 (¬3⊥).4 It is worth
noticing that, given the syntactical equivalences that we have recalled in Sec-
tion 3, an equivalent axiomatisation for CK is obtained by extending IPL with
the rules E2 and E3, and axioms M2, N2, C2, and K3. As before, by adding
also N3 we obtain the logic CCDLp. Notice that the axiom M3 is derivable in
both systems, e.g. from Nec and K3.

Both logics CK and CCDLp are non-normal, as they reject some form of
distributivity of 3 over ∨. In particular, CCDLp rejects binary distributivity
(C3), while CK rejects both binary and nullary distributivity (C3, N3). By
contrast, the modality 2 is normal, as the systems contain the axiom K2 and
the rule of necessitation.

The sequent calculi for CK and CCDLp (denoted here as G.CK and G.CCDLp)
are defined, respectively, in Bellin et al. [4] and in Wijesekera [42]. In order
to present the calculi, we consider the following rule, that we call Wseq (for
“Wijesekera”):

A1, ..., An, B ⇒ C
Wseq (n ≥ 1)

Γ,2A1, ...,2An,3B ⇒ 3C
.

Both [4] and [42] allow the set {A1, ..., An} in Wseq to be empty, thus including
implicitly Mseq

3 . By uniformity with the formulation of the other rules, we
require it to contain at least one formula. Then, given the present formulation,
G.CK and G.CCDLp are defined by extending G3ip as follows:

G.CK := M2C
seq + Mseq

3 + Nseq
2 + Wseq

G.CCDLp := M2C
seq + Mseq

3 + Nseq
2 + Wseq + strCseq + Nseq

3

Observe that G.CCDLp can be seen as an extension of our top calculus
G.IMCN2, as it corresponds to G.IMCN2 + Wseq. Instead, G.CK is not compa-
rable with any of our bimodal calculi, as it contains the rule Nseq

2 but it does
not contain Nseq

3 , a case which never occurs in any calculus of our lattice.

Theorem 14 ([4] for G.CK, [42] for G.CCDLp) The rule cut is admissible
in G.CK and G.CCDLp. Moreover, G.CK and G.CCDLp are equivalent with their
corresponding axiomatisations.

Notice that having Wseq instead of our “weak interaction” rules allows us
to take Nseq

2 and not Nseq
3 (as in G.CK), and to still obtain a cut-free calculus.

If instead we take both Wseq and Nseq
3 (as in G.CCDLp), we need to consider

also strCseq in order to have the admissibility of the cut rule, as explicited by
the following derivation:

4 The axiomatisation given by Wijesekera [42] includes also 3(A ⊃ B) ⊃ (2A ⊃ 3B);
however this formula is derivable from the other axioms (cf. e.g. Simpson [38], p. 48).
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p,¬p⇒ ⊥
Wseq

2p,3¬p⇒ 3⊥
⊥ ⇒

Nseq
3

3⊥ ⇒
cut2p,3¬p⇒

It is easy to verify that the endsequent 2p,3¬p⇒ is derivable in G.CCDLp \
{strCseq} if and only if the cut rule is applied, but it has a cut-free derivation
in G.CCDLp by applying strCseq to p,¬p ⇒. Notice also that adding strCseq

to the calculus preserve the equivalence with the axiomatisation, since str is
derivable from K3, Mon3 and N3.

7.2 Intuitionistic neighbourhood models for CK and CCDLp

We now define CINMs for CK and CCDLp, and prove the soundness and com-
pleteness of both systems.

Definition 10 (Intuitionistic neighbourhood models for CK and CCDLp)
A CINM for CK (CK-model in the following) is any CINM in which N2 is
supplemented, closed under intersection and contains the unit; N3 is supple-
mented; and such that:

If α ∈ N2(w) and β ∈ N3(w), then α ∩ β ∈ N3(w) (WInt).

A CINM for CCDLp (CCDLp-model in the following) is any CINM for CK
satisfying also the condition of weakInt (N2(w) ⊆ N3(w)).

Notice that, as a consequence, the function N3 in CCDLp-models contains
the unit. We now prove that the logics CK and CCDLp are sound and complete
with respect to the corresponding models.

Theorem 15 (Soundness) The logics CK and CCDLp are sound with respect
to CK- and CCDLp-models, respectively.

Proof We just consider the axiom K3. Assume that w 
 2(A ⊃ B) and
that w 6
 3B. Then [A ⊃ B] ∈ N2(w) and W \ [B] ∈ N3(w). By WInt,
[A ⊃ B] ∩ (W \ [B]) ∈ N3(w). Since [A ⊃ B] ∩ (W \ [B]) ⊆ (W \ [A]), by
supplementation we have W \ [A] ∈ N3(w); therefore w 6
 3A.

Completeness is proved as before by the canonical model construction.

Lemma 8 Let the canonical models Mc
CK for CK, and Mc

CCDLp for CCDLp,
be defined as in Definition 7. Then Mc

CK and Mc
CCDLp are, respectively, a

CK-model and a CCDLp-model.

Proof We show that both Mc
CK and Mc

CCDLp satisfy the condition of WInt.
Assume α ∈ N+

2 (X) and α ∩ β 6∈ N+
3 (X). Then there are A,B ∈ L such

that ↑prA ⊆ α, α ∩ β ⊆ Wc\ ↑prB and 2A,3B ∈ X. As a consequence,
↑prA ∩ β ⊆ Wc\ ↑prB, that by standard properties of set inclusion implies
β ⊆ (Wc\ ↑prA) ∪ (Wc\ ↑prB) = Wc\ ↑pr(A ∧ B). Moreover, since (2A ∧
3B) ⊃ 3(A ∧B) is derivable (from A ⊃ (B ⊃ A ∧B), by Mon2 and K3), we
have 3(A∧B) ∈ X. Thus, by definition, β /∈ N+

3 (X). In addition, by Lemma
3 (iv),Mc

CCDLp is also weakInt, as str is derivable in CCDLp.
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Theorem 16 (Completeness) Logics CK and CCDLp are complete with re-
spect to CK- and CCDLp-models, respectively.

Proof Same proof as for Theorem 11, using this time Lemma 8.

By applying the filtration technique to CK- and CCDLp-models we also
prove that both systems enjoy the finite model property. For CK, FMP with
respect to the original relational semantics has been proved in Mendler and
de Paiva [33], whereas — to the best of our knowledge — an analogous result
has not been stated explicitly before for CCDLp.

Lemma 9 LetM andM∗ be CINMs, whereM∗ is a finest Φ-filtration ofM
for a set Φ of formulas that is closed under subformulas and contains 2>,3⊥.
We call WInt closure of M∗ any CINM M◦ = 〈W∗,�∗,N ◦2,N ◦3,V∗〉 such
that

α ∈ N ◦2(w∼) iff there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1 ∩ ... ∩ αn ⊆ α;
α /∈ N ◦3(w∼) iff there are β1, ..., βn ∈ N ∗2(w∼) and γ /∈ N ∗3(w∼) s.t.

α ∩ β1 ∩ ... ∩ βn ⊆ γ.
The following hold:

(i) IfM is a CK-model, thenM◦ is a CK-model.
(ii) IfM is a CCDLp-model, thenM◦ is a CCDLp-model.
(iii) IfM is a CK- or a CCDLp-model, thenM◦ is a Φ-filtration ofM.

Proof (i) Clearly N ◦2 is supplemented and closed under intersection, and it
is immediate to check that N ◦3 is supplemented. By Lemma 5 we also have
that N ◦2 contains the unit. Here we show that M◦ satisfies WInt. In this
respect, we assume that α ∈ N ◦2(w∼) and that α∩β /∈ N ◦3(w∼). By definition,
there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1 ∩ ... ∩ αn ⊆ α. Moreover, there are
β1, ..., βk ∈ N ∗2(w∼) and γ /∈ N ∗3(w∼) s.t. (α ∩ β) ∩ β1 ∩ ... ∩ βk ⊆ γ. This
implies that α1 ∩ ... ∩ αn ∩ β ∩ β1 ∩ ... ∩ βk ⊆ γ. Therefore β /∈ N ◦3(w∼).

(ii) In addition to the properties of (i), we prove here that M◦ is also
weakInt. Assume by contradiction that α ∈ N ◦2(w∼) and α /∈ N ◦3(w∼). Then
there are α1, ..., αn ∈ N ∗2(w∼) s.t. α1 ∩ ... ∩ αn ⊆ α. Moreover, there are
β1, ..., βn ∈ N ∗2(w∼) and γ /∈ N ∗3(w∼) s.t. α ∩ β1 ∩ ... ∩ βn ⊆ γ. This implies
that there are 2A1, ...,2An,2B1, ...,2Bk,3C ∈ Φ s.t. α1 = [A1]

∼
M∗ , ..., αn =

[An]
∼
M∗ , β1 = [B1]

∼
M∗ , ..., βk = [Bk]

∼
M∗ , and γ = W∗ \ [C]∼M∗ . In addition,

[A1]M, ..., [An]M, [B1]M, ..., [Bk]M ∈ N2(w) and W \ [C]M /∈ N3(w). By the
filtration lemma, we obtain [A1]M∩...∩[An]M∩[B1]M∩...∩[Bk]M ⊆ W\[C]M.
Finally, since N2 is supplemented and closed under intersection, and M is
weakInt, we have W \ [C]M ∈ N3(w), which leads to a contradiction.

(iii) For 2A ∈ Φ, the proof is exactly as in Lemma 7. Let 3A ∈ Φ. If
W \ [A]M /∈ N3(w), then W∗ \ [A]∼M∗ /∈ N ∗3(w∼). Thus, since by Lemma 5
W∗ ∈ N2(w∼), we haveW∗\[A]∼M∗ /∈ N ◦3(w∼). Now assume thatW∗\[A]∼M∗ /∈
N ◦3(w∼). Then there are β1, ..., βn ∈ N ∗2(w∼) and γ /∈ N ∗3(w∼) s.t. W∗ \
[A]∼M∗∩β1∩...∩βn ⊆ γ. Hence, by definition, there exist2A1, ...,2An,2B1, ...,2Bk,3C ∈
Φ s.t. β1 = [B1]

∼
M∗ , ..., βk = [Bk]

∼
M∗ , and γ = W∗ \ [C]∼M∗ . In addition,

[B1]M, ..., [Bk]M ∈ N2(w) and W \ [C]M /∈ N3(w). By contradiction, assume
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that W \ [A]M ∈ N3(w). Then, by intersection closure of N2 and WInt,
[B1]M ∩ ... ∩ [Bk]M ∩W \ [A]M ∈ N3(w). Moreover, by the filtration lemma,
we have that [B1]M ∩ ... ∩ [Bk]M ∩ W \ [A]M ⊆ W \ [C]M. Thus, by sup-
plementation of N3, we obtain that W \ [C]M ∈ N3(w), which leads to a
contradiction.

We can then prove in a standard way the following theorem:

Theorem 17 CK and CCDLp enjoy the finite model property.

7.3 Pre-existing semantics and direct proofs of equivalence

7.3.1 Semantic equivalence for CCDLp

The results of the previous section show that CK and CCDLp are equally char-
acterised by our neighbourhood semantics and by the original ones, given
respectively by Mendler and de Paiva [33] and Wijesekera [42]. It is instruc-
tive, however, to prove the equivalence directly by mutual transformations of
models. We begin with system CCDLp, and consider the relational models by
Wijesekera [42] as well as the neighbourhood models by Kojima [24].

Definition 11 (Relational models for CCDLp (Wijesekera [42])) A re-
lational model for CCDLp is a tuple M = 〈W,�,R,V〉, where W, � and V
are as in Definition 5, and R is any binary relation onW. The forcing relation
w 
r A is defined as w 
 A (Definition 5) for A ≡ p,B ∧ C,B ∨ C,B ⊃ C;
and in the following way for modal formulas:

w 
r 2B iff for all v � w, for all u ∈ W, vRu implies u 
r B;
w 
r 3B iff for all v � w, there is u ∈ W s.t. vRu and u 
r B.

Definition 12 (Kojima’s neighbourhood models for CCDLp (Kojima
[24])) Kojima’s neighbourhood models for CCDLp are tuples M = 〈W,�
,Nk,V〉, where W, � and V are as in Definition 5, and Nk is a neighbourhood
function W −→ P(P(W)) such that:

• w � v implies that Nk(v) ⊆ Nk(w);
• Nk(w) 6= ∅ for all w ∈ W.

The forcing relation w 
k A is defined as usual for A ≡ p,⊥, B∧C,B∨C,B ⊃
C; and for modal formulas it is defined as follows:

w 
k 2B iff for all α ∈ Nk(w), for all v ∈ α, v 
k B;
w 
k 3B iff for all α ∈ Nk(w), there is v ∈ α s.t. v 
k B.

Theorem 18 (Wijesekera [42], Kojima [24]) The logic CCDLp is sound
and complete with respect to relational models for CCDLp, as well as with
respect to Kojima’s models for CCDLp.
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That relational models, Kojima’s models and CINMs for CCDLp are equiv-
alent is a corollary of the respective completeness theorems. It is instructive,
however, to prove the equivalence directly. A proof of equivalence of Kojima’s
and relational models is given in Kojima [24]. Here we prove directly the equiv-
alence of Kojima’s and CINMs for CCDLp. In particular, we show that every
Kojima model can be transformed into an equivalent CINM for CCDLp, and
that every finite CINM for CCDLp can be transformed into an equivalent Ko-
jima model. By combining these results with the transformations given by
Kojima we also obtain direct transformations between CINMs and relational
models. Furthermore, considering also the finite model property of CCDLp

with respect to the corresponding CINMs (cf. Theorem 17), this provides an
alternative proof of equivalence of the three semantics.

In the proof of some of the next lemmas we shall make use of the following
property, which is satisfied by any finite model for CCDLp and CK, and is an
easy consequence of WInt and the intersection closure of N2.

Fact 2. Every finite CINM for CCDLp or for CK satisfies the following property:
For all α ∈ N3(w), there is β ∈ N3(w) s.t. β ⊆ α and β ⊆

⋂
N2(w) (WInt′).

Lemma 10 Let Mk = 〈W,�,Nk,V〉 be a Kojima model for CCDLp, and let
Mn be the model 〈W,�,N2,N3,V〉 where W, � and V are as inMk, and:

N2(w) = {α ⊆ W |
⋃
Nk(w) ⊆ α};

N3(w) = {α ⊆ W | there is β ∈ Nk(w) s.t. β ⊆ α}.

ThenMn is a CINM for CCDLp and is pointwise equivalent toMk.

Proof It is immediate to verify that N2 and N3 are supplemented and contain
the unit; thatN2 is closed under intersection; and that w � v impliesN2(w) ⊆
N2(v) and N3(v) ⊆ N3(w). We show thatMn satisfies the other properties
of CCDLp-models.

(weakInt) Assume α ∈ N2(w). Then
⋃
Nk(w) ⊆ α, and, since Nk(w) 6= ∅,

there is β ∈ Nk(w) such that β ⊆ α. Therefore α ∈ N3(w).
(WInt) Assume α ∈ N2(w) and β ∈ N3(w). Then

⋃
Nk(w) ⊆ α and there

is γ ∈ Nk(w) such that γ ⊆ β. Thus γ ⊆
⋃
Nk(w), which implies γ ⊆ α ∩ β.

Therefore α ∩ β ∈ N3(w).
We now prove by induction on A that for every A ∈ L and w ∈ W,

Mn, w 
 A iff Mk, w 
k A.

We only consider the inductive cases A ≡ 2B,3B.
A ≡ 2B.Mn, w 
 2B iff [B]Mn

∈ N2(w) iff
⋃
Nk(w) ⊆ [B]Mn

iff (i.h.)⋃
Nk(w) ⊆ [B]Mk

iff for all α ∈ Nk(w), α ⊆ [B]Mk
iffMk, w 
k 2B.

A ≡ 3B. Mn, w 
 3B iff W \ [B]Mn
/∈ N3(w) iff for all α ∈ Nk(w),

α ∩ [B]Mn
6= ∅ iff (i.h.) for all α ∈ Nk(w), α ∩ [B]Mk

6= ∅ iffMk, w 
k 3B.

Lemma 11 Let Mn = 〈W,�,N2,N3,V〉 be a finite CINM for CCDLp, and
letMk be the model 〈W,�,Nk,V〉 where W, � and V are as inMn, and:
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Nk(w) = {α ∈ N3(w) | α ⊆
⋂
N2(w)}.

ThenMk is a Kojima model for CCDLp and is pointwise equivalent toMn.

Proof First, notice that Mk is a Kojima model: by intersection closure, we
have that

⋂
N2(w) ∈ N2(w), hence by weakInt,

⋂
N2(w) ∈ N3(w). Thus⋂

N2(w) ∈ Nk(w), which implies Nk(w) 6= ∅. Moreover, assume that w � v
and α ∈ Nk(v). It follows that α ∈ N3(v) and α ⊆

⋂
N2(v). Since N3(v) ⊆

N3(w) and N2(w) ⊆ N2(v), we have both α ∈ N3(w) and α ⊆
⋂
N2(w),

therefore α ∈ Nk(w).
We prove by induction on A that for every A ∈ L and w ∈ W,

Mn, w 
 A iff Mk, w 
k A.

As before, we only consider the inductive cases A ≡ 2B,3B:
A ≡ 2B. Mk, w 
k 2B iff for all α ∈ Nk(w), α ⊆ [B]Mk

iff (since⋂
N2(w) ∈ Nk(w))

⋂
N2(w) ⊆ [B]Mk

iff (i.h.)
⋂
N2(w) ⊆ [B]Mn iff (by

properties of N2(w)) [B]Mn
∈ N2(w) iffMn, w 
 2B.

A ≡ 3B. AssumeMk, w,
k 3B. Then for every α ∈ Nk(w), α∩ [B]Mk
6=

∅, and, by inductive hypothesis, α ∩ [B]Mn
6= ∅. Thus for every α ∈ N3(w)

s.t. α ⊆
⋂
N2(w), α∩ [B]Mn 6= ∅. Let β be any neighbourhood in N3(w). By

WInt′, there is γ ⊆ β s.t. γ ∈ N3(w) and γ ⊆
⋂
N2(w). Then γ∩ [B]Mn 6= ∅,

which implies β ∩ [B]Mn
6= ∅. Therefore Mn, w 
 3B. Now assume that

Mn, w 
 3B. Then for every α ∈ N3(w), α∩ [B]Mn
6= ∅. Thus for every α ∈

Nk(w), α∩ [B]Mn
6= ∅, and, by i.h., α∩ [B]Mk

6= ∅. ThereforeMk, w 
k 3B.

Theorem 19 A formula A is valid in Kojima models for CCDLp if and only
if it is valid in CINMs for CCDLp.

Proof If a Kojima model for CCDLp falsifies A, then by Lemma 10 there is a
CINM for CCDLp that falsifies A. Vice versa, if a CINM for CCDLp falsifies
A, then by Theorem 17 there is a finite CINM for CCDLp that falsifies A, and
consequently by Lemma 11 there is a Kojima model for CCDLp that falsifies
A.

Given the previous lemmas and Theorems 4.3 and 4.7 in Kojima [24], we
can also see how to obtain an equivalent relational model starting from a
CINM for CCDLp, and vice versa. As before, we assume the original CINM to
be finite.

Lemma 12 Let Mr = 〈W,�,R,V〉 be a relational model for CCDLp, and
let R(w) = {v | wRv}. We define the neighbourhood model Mn = 〈W,�
,N2,N3,V〉 by taking W, �, V as in Mr, and the following neighbourhood
functions:

N2(w) = {α ⊆ W | for all v � w,R(v) ⊆ α};
N3(w) = {α ⊆ W | there is v � w s.t. R(v) ⊆ α}.

ThenMn is a CINM for CCDLp, and it is pointwise equivalent toMr.
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Lemma 13 Let Mn = 〈W,�,N2,N3,V〉 be a finite CINM for CCDLp. The
relational modelM∗ = 〈W∗,�∗,R∗,V∗〉 is defined as follows:

• W∗ = {(w,α) | w ∈ W, α ∈ N3(w), and α ⊆
⋂
N2(w)};

• (w,α) �∗ (v, β) iff w � v;

• (w,α)R∗(v, β) iff v ∈ α;

• V∗((w,α)) = {p | p ∈ V(w)} for all w ∈ W.

Then M∗ is a relational model for CCDLp. Moreover, for all A ∈ L and
w ∈ W, the following claims are equivalent:

1) Mn, w 
 A.
2) For every (w,α) ∈ W∗,M∗, (w,α) 
r A.
3) There is (w,α) ∈ W∗ such thatM∗, (w,α) 
r A.

Theorem 20 A formula A is valid in relational models for CCDLp if and only
if it is valid in CINMs for CCDLp.

Proof By Lemmas 12 and 13 and Theorem 17. A direct proof of the two lemmas
is left to the reader.

7.3.2 Semantic equivalence for CK

We now present the relational models for CK by Mendler and de Paiva [33],
and prove directly their equivalence with CINMs. Relational models for CK
are defined by enriching Wijesekera’s models for CCDLp with inconsistent (or
“fallible”) worlds — i.e. worlds satisfying ⊥ — as follows.

Definition 13 (Relational models for CK) Relational models for CK are
defined exactly as relational models for CCDLp (Definition 11), except that the
standard forcing relation for ⊥ (w 6
r ⊥ ) is replaced by the following ones:

If w 
r ⊥, then for every v, w � v or wRv implies v 
r ⊥;
If w 
r ⊥, then w 
r p for every propositional variables p ∈ L.

Observe that fallible worlds are related through � and R only to other
fallible worlds. Moreover, the above definition preserves the validity of > and
⊥ ⊃ A, for all A.

Theorem 21 (Mendler and de Paiva [33]) The logic CK is sound and
complete with respect to relational models for CK.

As for the case of CCDLp, we can prove that every relational model can be
transformed into an equivalent CINM for CK, and that every finite CINM for
CK can be transformed into an equivalent relational model. The equivalence
of the two semantics is then a consequence of the finite model property of CK
with respect to its CINMs. The transformations considered here are relatively
similar to those in Lemmas 12 and 13. However in this case they are a bit
more complicated because of the presence of inconsistent worlds.
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Lemma 14 Let Mr = 〈W,�,R,V〉 be a relational model for CK. Moreover,
for every w ∈ W, let R(w) = {v | wRv}. We denote with W+ the set {w ∈
W | Mr, w 6
r ⊥} (i.e. the set of consistent worlds ofMr), and for all α ⊆ W,
we denote with α+ the set α ∩W+.

We define the neighbourhood model Mn = 〈W+,�+,N2,N3,V+〉, where
�+ and V+ are the restrictions to W+ of � and V, and N2, N3 are the
following neighbourhood functions:

N2(w) = {α+ ⊆ W | for all v � w,R(v) ⊆ α};
N3(w) = {α+ ⊆ W | there is v � w s.t. R(v) ⊆ α+}.

ThenMn is a CINM for CK. Moreover, for all A ∈ L and w ∈ W+,
Mn, w 
 A iff Mr, w 
r A.

Proof It is easy to verify thatMn is a CINM for CK. In particular, for WInt,
assume that α+ ∈ N2(w) and β+ ∈ N3(w). Then there is v � w s.t. R(v) ⊆
β+; thus R(v) ⊆ α. Then R(v) ⊆ α ∩ β+ = (α ∩ β)+. Therefore (α ∩ β)+ =
α+ ∩ β+ ∈ N3(w).

We now prove that for every w ∈ W+,Mn, w 
 A if and only ifMr, w 
r

A. This is equivalent to stating that [A]Mn
= [A]+Mr

. As usual, we only con-
sider the modal cases.

A ≡ 2B. Let w ∈ W+.Mn, w 
 2B iff [B]Mn
∈ N2(w) iff (i.h.) [B]+Mr

∈
N2(w) iff for all v � w, R(v) ⊆ [B]Mr

iffMr, w 
r 2B.
A ≡ 3B. Assume thatMr, w 
r 3B and w ∈ W+. Then for every v � w,

there is u ∈ W s.t. vRu and Mr, u 
r B. Thus for every v � w, R(v) 6⊆
W \ [B]Mr

, which in particular implies that R(v) 6⊆ (W \ [B]Mr
)+. Moreover,

(W\[B]Mr
)+ =W+\[B]+Mr

= (i.h.) W+\[B]Mn
. ThenW+\[B]Mn

/∈ N3(w),
thereforeMn, w 
 3B. Now assume thatMn, w 
 3B. Then W+ \ [B]Mn

/∈
N3(w). This implies that for every v � w, R(v) 6⊆ W+ \ [B]Mn ; that is, there
is u ∈ W s.t. vRu and u /∈ W+ \ [B]Mn . Thus u /∈ W+ or u ∈ [B]Mn . If
u /∈ W+, then Mr, u 
r ⊥, hence Mr, u 
r B. If u ∈ [B]Mn

, by inductive
hypothesis u ∈ [B]+Mr

, thusMr, u 
r B. ThereforeMr, w 
r 3B.

Lemma 15 LetMn = 〈W,�,N2,N3,V〉 be a finite CINM for CK, and take
f /∈ W. The relational modelM∗ = 〈W∗,�∗,R∗,V∗〉 is defined as follows:

• W∗ = {(w,α) | w ∈ W, N3(w) 6= ∅, α ∈ N3(w), and α ⊆
⋂
N2(w)}

∪ {(v,
⋂
N2(v) ∪ {f}) | v ∈ W and N3(v) = ∅}

∪ {(f , {f})};

• (w,α) �∗ (v, β) iff w � v or w, v = f ;

• (w,α)R∗(v, β) iff v ∈ α;

• V∗((w,α)) = {p | p ∈ V(w)} for all w ∈ W; and V∗((f , {f})) = Atm;

• M∗, (f , {f}) 
r ⊥.

ThenM∗ is a relational model for CK. Moreover, for every A ∈ L and w ∈ W,
the following claims are equivalent:
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1) Mn, w 
 A.
2) For every (w,α) ∈ W∗,M∗, (w,α) 
r A.
3) There is (w,α) ∈ W∗ such thatM∗, (w,α) 
r A.

Proof It is easy to check that M∗ is a relational model for CK, in particular
that the conditions on inconsistent worlds are satisfied. We prove by induction
on A that 1), 2) and 3) are equivalent. As usual we only consider the inductive
cases A ≡ 2B, 3B.

• A ≡ 2B.

− 1) implies 2). Assume Mn, w 
 2B. Then [B]Mn
∈ N2(w), that implies⋂

N2(w) ⊆ [B]Mn
. Let (w,α) ∈ W∗, and (w,α) �∗ (v, β). Then w � v, so⋂

N2(v) ⊆
⋂
N2(w). We distinguish two cases:

(a) f ∈ β. Then (v, β)R∗(u, γ) implies u ∈
⋂
N2(v) or u = f .

If u = f , then (u, γ) = (f , {f}), soM∗, (u, γ) 
r B.
If u ∈

⋂
N2(v), then u ∈ [B]Mn

. By inductive hypothesis we have
M∗, (u, γ) 
r B for all γ s.t. (u, γ) ∈ W∗.

(b) f /∈ β. Then β ⊆
⋂
N2(v), thus β ⊆ [B]Mn . Let (v, β)R∗(u, γ). Then

u ∈ β, soMn, u 
 B. By inductive hypothesis we haveM∗, (u, γ) 
r B.
By (a) and (b) we have that for all (v, β) �∗ (w,α) and all (u, γ) s.t.
(v, β)R∗(u, γ), M∗, (u, γ) 
r B. Therefore for all α s.t. (w,α) ∈ W∗,
M∗, (w,α) 
r 2B.

− 2) implies 3). Immediate because for every w ∈ W there is α such that
(w,α) ∈ W∗.

− 3) implies 1). AssumeM∗, (w,α) 
r 2B for an α s.t. (w,α) ∈ W∗. Then for
every (v, β) �∗ (w,α) and everys (u, γ) s.t. (v, β)R∗(u, γ), M∗, (u, γ) 
r

B. Thus, in particular, for every δ s.t. (w, δ) ∈ W∗, for every (u, γ) s.t.
(w, δ)R∗(u, γ), M∗, (u, γ) 
r B. Take any world z ∈

⋂
N2(w). There

exists γ s.t. (z, γ) ∈ W∗. Then (w,
⋂
N2(w))R∗(z, γ) or (w,

⋂
N2(w) ∪

{f})R∗(z, γ) (depending on whether N3(w) 6= ∅ or N3(w) = ∅; in the
first case

⋂
N2(w) ∈ N3(w)). Thus M∗, (z, γ) 
r B; and by inductive

hypothesis, Mn, z 
 B. So
⋂
N2(w) ⊆ [B]Mn

, which implies [B]Mn
∈

N2(w). ThereforeMn, w 
 2B.

• A ≡ 3B.

− 1) implies 2). Assume Mn, w 
 3B, and let (w,α) ∈ W∗ and (w,α) �∗
(v, β). We distinguish two cases:
(a) f ∈ β. Then (y, β)R∗(f , {f}), andM∗, (f , {f}) 
r B.
(b) f /∈ β. Then β ∈ N3(y), so β ∈ N3(y). By Mn, w 
 3B, we have

that for every γ ∈ N3(w), γ ∩ [B]Mn
6= ∅; thus β ∩ [B]Mn

6= ∅. Then
there is u ∈ β s.t. Mn, u 
 B. By inductive hypothesis, for every δ
s.t. (u, δ) ∈ W∗,M∗, (u, δ) 
r B. Moreover, there is ε s.t. (u, ε) ∈ W∗.
Thus (v, β)R∗(u, ε) andM∗, (u, ε) 
r B.

By (a) and (b) we have that for every (v, β) �∗ (w,α), there is (u, γ) s.t.
(v, β)R∗(u, γ) and M∗, (u, γ) 
r B. Therefore, for every α s.t. (w,α) ∈
W∗,M∗, (w,α) 
r 3B.
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− 2) implies 3). Immediate because for every w ∈ W there is α such that
(w,α) ∈ W∗.

− 3) implies 1). AssumeM∗, (w,α) 
r 3B for a α s.t. (w,α) ∈ W∗. Then for
every (v, β) �∗ (w,α), there is (u, γ) s.t. (v, β)R∗(u, γ) andM∗, (u, γ) 
r

B. Thus in particular, for every δ s.t. (w, δ) ∈ W∗, there is (u, γ) s.t.
(w, δ)R∗(u, γ) andM∗, (u, γ) 
r B. We distinguish two cases:
(a) f ∈ δ for a (w, δ) ∈ W∗. Then N3(w) = ∅, soMn, w 
 3B.
(b) f /∈ δ for every (w, δ) ∈ W∗. Then by inductive hypothesis we have that

for every (w, δ) ∈ W∗, there is (u, γ) s.t. (w, δ)R∗(u, γ) andMn, u 
 B.
So u ∈ δ. This means that for every δ ∈ N3(w) s.t. δ ⊆

⋂
N2(w),

δ ∩ [B]Mn 6= ∅. Then by WInt′, we have that for every ε ∈ N3(w),
ε ∩ [B]Mn 6= ∅. ThereforeMn, w 
 3B.

Theorem 22 A formula A is valid in relational models for CK if and only if
it is valid in CINMs for CK.

Proof Assume that A is not valid in relational models for CK. Then there are
a relational modelMr and a world w such thatMr, w 6
r A. The world w is
consistent (i.e.Mr, w 6
r ⊥) as inconsistent worlds satisfy all formulas. Then
by Lemma 14, there is a CINMMn for CK such thatMn, w 6
 A.

Now, assume that A is not valid in CINMs for CK. Then by Theorem 17,
there are a finite modelMn and a world w such thatMn, w 6
 A. Therefore
by Lemma 15, there are a relational modelM∗ and a world (w,α) such that
M∗, (w,α) 6
r A.

8 Further work

The results presented in this article can be extended in several ways, here we
highlight some possible directions.

8.1 Non-monotonic systems with C2 and negative interactions a and b

We have shown in Section 4.2 that the combination of rule E2C
seq with negaC

seq

– i.e. the generalisation to n principal formulas of rule negseqa – provides a cut-
free calculus, and that the admissibility of cut is preserved by the addition
of rules Nseq

3 and Nseq
2 . In addition, for the corresponding logics we have also

provided a Hilbert axiomatisation and a semantic characterisation in terms of
CINMs. As we remarked, the addition of a proper generalisation of rule negseqb

is by contrast problematic. The rule would be the following

A1, ..., An, B ⇒ ¬(A1 ∧ ... ∧An)⇒ B
negbC

seq

Γ,2A1, ...,2An,3B ⇒ C
;

but at present it is an open problem whether this rule would give a cut-free
calculus.

Alternatively, one could consider the rule
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3-IE

3-IM

3-IEC 3-IEN

3-IMC 3-IMN

3-IECN

3-IMCN

Fig. 10: Extended lattice of 3-logics.

A1, ..., An, B ⇒ ¬A1 ⇒ B ... ¬An ⇒ B
negbC

′seq
Γ,2A1, ...,2An,3B ⇒ C

.

It can be shown that this rule gives a cut-free calculus. However, since ¬A1 ∨
...∨¬An is not intuitionistically equivalent to ¬(A1∧ ...∧An), it is not obvious
how to extend the Hilbert axiomatisation and the semantic characterisation to
the resulting logic. The addition of this rule would be natural in a non-normal
modal extension of a suitable intermediate logic. The whole issue will be object
of future work.

8.2 Systems containing C3

In this paper we have restricted the analysis to systems not containing axiom
C3. This axiom is of particular significance in the intuitionistic context since
it can be seen as a cut-off point between the constructive and the intuitionistic
tradition. In future work we aim to extend our framework to cover also such
systems, here we limit ourselves to some preliminary remarks.

If we restrict our analysis to systems without interaction between the
modalities, a semantic characterisation of axiom C3 can be given by requiring
that N3 is closed under intersection. To make this precise, let us extend the
3-family to the systems containing C3: 3-logics are now defined by adding to
IPL the congruence rule E3 and any combination of axioms M3, N3, and C3.
We obtain the picture in Figure 10, which contains 8 non equivalent systems.

In order to prove completeness we have to modify Definition 6 and Defini-
tion 7 of canonical models as follows.

Definition 14 (Canonical models for non-monotonic 3-systems) Let
L be any 3-system not containing axiom M3. The canonical model Mc =
〈Wc,�c,N c

3,Vc〉 for L is defined as in Definition 6, except that it does not
contain N c

2, and N c
3 is now defined as

N c
3(X) = {Wc\ ↑prA | 3A /∈ X}.

Definition 15 (Canonical models for monotonic 3-systems) Let L be
any 3-system containing axiom M3. The canonical model Mc = 〈Wc,�c

,N+
3 ,Vc〉 for L is defined as in Definition 15, except for N+

3 , which is



Intuitionistic non-normal modal logics: A general framework 45

N+
3 (X) = {α ⊆ Wc | there is A ∈ L s.t. 3A /∈ X and α ⊆ Wc\ ↑prA}.

Theorem 23 Every 3-logic is sound and complete with respect to the corre-
sponding CINMs.

Proof As usual, the claim follows from the truth lemma: X 
 A if and only
if A ∈ X, and the fact that if L contains M3, N3, or C3, then the canonical
model for L satisfies the corresponding semantic conditions. We only show a
sketch of the proof considering canonical models for non-monotonic systems.

For the truth lemma we only address the case A = 3B. Assume 3B /∈ X.
Then Wc\ ↑prB ∈ N c

3(X), and by inductive hypothesis Wc \ [B] ∈ N c
3(X),

thus X 6
 3B. Now assume X 6
 3B. Then Wc \ [B] ∈ N c
3(X), and by

inductive hypothesis Wc\ ↑prB ∈ N c
3(X). By definition, there is C ∈ L such

that 3C /∈ X and ↑prC =↑prB. Thus ` C ⊃⊂ B, and by E3, ` 3C ⊃⊂ 3B.
It follows from the properties of prime sets that 3B /∈ X.

Now we show that N c
3 is closed under intersection if L contains C3. As-

sume α, β ∈ N c
3(X). Then there are A,B ∈ L such that α = Wc\ ↑prA,

β = Wc\ ↑prB, and 3A,3B /∈ X. Since X contains C3 and is closed un-
der derivation, 3(A ∨ B) /∈ X. Thus Wc\ ↑pr(A ∨ B) /∈ N c

3(X), where
Wc\ ↑pr(A ∨B) =Wc \ (↑prA∪ ↑prB) = (Wc\ ↑prA) ∩ (Wc\ ↑prB) = α ∩ β.

This result can be extended to logics with both 2 and 3 but without
interactions between the modalities. On the contrary, as a consequence of the
modification of the definition of canonical models, for logics with interactions
between 2 and 3 the completeness proofs presented in Section 6 do not work
anymore. Further investigation is required to establish whether in presence of
C3 we can preserve the semantic conditions connecting N2 and N3 that we
considered in this work, or whether we need to consider different connections
instead.

From the point of view of sequent calculi, 3-logics containing C3 could be
covered by modifying rules Eseq

3 , Mseq
3 , and Nseq

3 in the following way, where ∆
is a multiset of formulas of L.

A⇒ B1, ..., Bn B1 ⇒ A ... B1 ⇒ A
E3C

seq

Γ,3A⇒ 3B1, ...,3Bn, ∆

A⇒ B1, ..., Bn
M3C

seq

Γ,3A⇒ 3B1, ...,3Bn, ∆
A⇒N3C

seq

Γ,3A⇒ ∆

If compared with the other rules considered in this work, rules for C3 have
the crucial difference of containing multiple formulas on the right-hand side of
sequents. In order to admit these rules we have to take as base calculus instead
of G3ip a multisuccedent calculus for intuitionistic logic, as for instance the
propositional fragment of m-G3i in Troelstra and Schwichtenberg [41] (let us
call it m-G3ip). Then sequent calculi for 3-systems containing C2 are defined
by extending m-G3ip as follows:

G.3-IEC := E3C
seq

G.3-IMC := M3C
seq

G.3-IECN := E3C
seq + Nseq

3

G.3-IMCN := M3C
seq + Nseq

3
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We can prove the following theorem.

Theorem 24 The cut rule
Γ ⇒ ∆,A A, Γ ′ ⇒ ∆′

cut
Γ, Γ ′ ⇒ ∆,∆′

is admissible in G.3-IEC, G.3-IMC, G.3-IECN, and G.3-IMCN.

As before, the proof of cut admissibility goes through the admissibility of
contraction and consists in showing how to remove any application of cut in a
derivation. Here we only show two significant cases in which the cut formula
is principal in the last rule applied in the derivation of both premisses of cut.

• (E3C
seq; E3C

seq). Let Γ1 = B1, ..., Bn and Γ2 = D1, ..., Dm.

A⇒ Γ1, C B1 ⇒ A ... Bn ⇒ A C ⇒ A
E3C

seq

Γ,3A⇒ 3Γ1,3C,∆

C ⇒ Γ2 D1 ⇒ C ... Dm ⇒ C
E3C

seq

Γ ′,3C ⇒ 3Γ2, ∆
′
cut

Γ, Γ ′,3A⇒ 3Γ1,3Γ2, ∆,∆
′

;

A⇒ Γ1, C C ⇒ Γ2
cut

A⇒ Γ1, Γ2 B1 ⇒ A ... Bn ⇒ A

Di ⇒ C C ⇒ A(
cut

)m
i=1Di ⇒ A

E3C
seq

Γ, Γ ′,3A⇒ 3Γ1,3Γ2, ∆,∆
′

• (E3C
seq; N3C

seq). Let Γ1 = B1, ..., Bn.
A⇒ Γ1, C B1 ⇒ A ... Bn ⇒ A C ⇒ A

E3C
seq

Γ,3A⇒ 3Γ1,3C,∆
C ⇒ N3C

seq

Γ ′,3C ⇒ ∆′
cut

Γ, Γ ′,3A⇒ 3Γ1,3Γ2, ∆,∆
′

;

A⇒ Γ1, C C ⇒
cut

A⇒ Γ1 B1 ⇒ A ... Bn ⇒ A
E3C

seq

Γ, Γ ′,3A⇒ 3Γ1,3Γ2, ∆,∆
′

Again, this result can be extended to logics with 2 and 3 but without
interactions (after rewriting the rules for 2 in their multi-succedent versions).
We leave to future work the investigation of interactions between the modal-
ities which in presence of C3 give both cut-free calculi and a satisfactory
characterisation in terms of CINMs.

8.3 Combinations of monotonic and non-monotonic modalities

In all considered systems 2 and 3 are either both monotonic or both non-
monotonic. However from a combinatorial perspective, and possibly under
certain interpretation of the modalities, it makes sense to consider the cases
in which one modality is monotonic and the other one is non-monotonic.

Let us consider first the cases in which one modality is characterised only
by the congruence rule and the other modality is characterised only by the
monotonicity rule (i.e. there are no axioms for N and C). It can be shown that
the only rule for interaction which gives a cut-free calculus is
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A,B ⇒
strseq

Γ,2A,3B ⇒ C
.

In calculi defined by adding the other two interactions (weakseqa + weakseqb and
negseqb + negseqa ) the cut rule is not admissible and it is possible to find coun-
terexamples to cut elimination. For instance, the counterexample presented in
Example 3 still holds when 3 is non-monotonic. Concerning extensions with
rules for N and C, we remark that weakseqa is derivable from Nseq

3 , whence in
principle there might be more combinations of rules enjoying cut admissibil-
ity. We leave to future investigation the study of these combinations and the
semantic properties of the resulting systems.

8.4 Further topics

Our results can be extended in other directions. First of all, we can study
further extensions of the lattice of intuitionistic non-normal modal logics by
axioms analogous to the standard modal ones such as T, D, 4, 5, etc. In the
literature there are several proposals of proof systems for extensions of classical
non-normal modal logics on the one hand, and of constructive modal logics
on the other by the axioms T, D, 4, 5, etc: sequent calculi for the classical
cube extended with these axioms have been studied in Indrzejczak [22,23],
Lellmann and Pimentel [27], and Orlandelli [29], whereas nested sequent calculi
for analogous extensions of CK have been proposed in Arisaka et al. [2]. On the
semantical side, neighbourhood semantics for some intuitionistic monomodal
logics containing T have been recently considered by Witczak [45].

Furthermore, we can study computational and proof-theoretical properties
such as complexity bounds and interpolation. Concerning the latter, in Orlan-
delli [29] a constructive proof of Craig interpolation for the cube of classical
non-normal modal logics is given basing on suitable sequent calculi; moreover
Iemhoff [21] proposes a set of general conditions on the form of sequent rules
ensuring uniform interpolation in modal logics. Furthermore, the simple for-
mat of Gentzen calculi presented in this work is not the most adequate for
proof search and countermodel extraction, in this respect we would like to
develop sequent calculi with invertible rules and that allow for direct counter-
model extraction. Such calculi will likely have a more complex structure, like
labelled, nested or hypersequent calculi (invertible labelled calculi for classi-
cal non-normal modal logics allowing for direct countermodel extraction are
presented in Negri [28] and in Dalmonte et al. [8]). Finally, it would be in-
teresting to see whether these logics, similarly to CK (Bellin et al. [4]), can
be given a type-theoretical interpretation by a suitable extension of the typed
lambda-calculus. All of this will be part of our future research.

9 Conclusion

This article represents the initial step towards a general investigation of non-
normal modalities with an intuitionistic base. We have defined a new family of
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intuitionistic non-normal modal logics that can be seen as intuitionistic coun-
terparts of classical non-normal modal logics. In particular, we have defined
12 monomodal logics – 8 logics with 2 modality and 4 logics with 3 modality
– and 24 bimodal logics. For each of them we have provided both a Hilbert
axiomatisation and a cut-free sequent calculus. All logics are decidable and
contain some of the modal axioms characterising the classical cube. In ad-
dition, bimodal logics contain interactions between the modalities that can
be seen as “weak duality principles”, and express under which conditions two
formulas 2A and 3B are jointly inconsistent. On the basis of the different
strength of such interactions, we identify different intuitionistic counterparts
of a given classical logic. The picture we get is richer than in the classical case,
as logics which collapse in the classical setting are distinct in the intuitionistic
one: whereas the classical cube contains 8 logics, the intuitionistic bimodal
lattice features 24.

Next, we have given a modular semantic characterisation of the logics by
means of Coupled Intuitionistic Neighbourhood Models. The models contain
an order relation and two neighbourhood functions handling the modalities
separately. For the two functions we consider the standard properties of neigh-
bourhood models, moreover they can be combined in different ways reflecting
the possible interactions between 2 and 3. Through a filtration argument
we have also proved that all logics enjoy the finite model property. Our se-
mantics turned out to be a versatile tool to analyse intuitionistic non-normal
modal logics, which is capable of capturing further well-known logics such as
Constructive K and the propositional fragment of Wijesekera’s CCDL.
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