
HYPNO: Theorem Proving with Hypersequent
Calculi for Non-Normal Modal Logics

(System Description)?

Tiziano Dalmonte1[0000−0002−7153−0506], Nicola Olivetti1[0000−0001−6254−3754],
and Gian Luca Pozzato3[0000−0002−3952−4624]

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France -
{tiziano.dalmonte,nicola.olivetti}@lis-lab.fr

2 Dipartimento di Informatica, Universitá degli Studi di Torino, Turin, Italy -
gianluca.pozzato@unito.it

Abstract. We present HYPNO (HYpersequent Prover for NOn-normal
modal logics), a Prolog-based theorem prover and countermodel genera-
tor for non-normal modal logics. HYPNO implements some hypersequent
calculi recently introduced for the basic system E and its extensions with
axioms M, N, and C. It is inspired by the methodology of leanTAP, so
that it does not make use of any ad-hoc control mechanism. Given a for-
mula, HYPNO provides either a proof in the calculus or a countermodel,
directly built from an open saturated hypersequent. Preliminary experi-
mental results show that the performances of HYPNO are very promising
with respect to other theorem provers for the same class of logics.

Keywords: Non-normal modal logics · Hypersequent calculi · Prolog

P
re
pr
in
t

–
P
re
pr
in
t

–
P
re
pr
in
t

–
P
re
pr
in
t

1 Introduction

Non-Normal Modal Logics (NNMLs for short) are a generalization of ordinary
modal logics that do not satisfy some axioms or rules of minimal normal modal
logic K. They have been studied since the seminal works by C.I. Lewis, Scott,
Lemmon, and Chellas (for an introduction see [3]), and along the years have
gained interest in several areas such as epistemic, deontic, and agent reason-
ing among others [1, 7, 12–14]. NNMLs are characterised by the neighbourhood
semantics. In [6, 4], a variant of it is presented, called bi-neighbourhood seman-
tics, this variant is more suitable for logics lacking the monotonicity property,
although equivalent to the standard one.

Not many theorem provers for NNMLs have been developed so far.3 In [8]
optimal decision procedures are presented for the whole cube of NNMLs; these
procedures reduce a validity/satisfiability checking in NNMLs to a set of SAT

? This work has been partially supported by the ANR project TICAMORE ANR-16-
CE91-0002-01 and by the INdAM project GNCS 2019 “METALLIC #2”.

3 We only mention here implemented systems, for a discussion on proof systems for
NNMLs we refer to [4, 6] and references therein.

problems and then call an efficient SAT solver. Despite undoubtably efficient,
they do not provide explicitly “proofs”, nor countermodels. A theorem prover for
logic EM based on a tableaux calculus very similar to the one in [10], is presented
in [9]: the system, is implemented in ELAN and handles also more complex
Coalition Logic and Alternating Time Temporal logic. In [11] it is presented
a Prolog implementation of a NNML containing both the [∀∀] and the [∃∀]
modality; its [∃∀] fragment coincides with the logic EM, also covered by HYPNO.
Finally in [5] it is presented PRONOM, a theorem prover for the whole range
of NNMLs, which implements labelled sequent calculi in [6]; PRONOM provides
both proofs and countermodels in the mentioned bi-neighbourhood semantics.

In this paper we describe HYPNO (HYpersequent Prover for NOn-normal
modal logics) a Prolog theorem prover for the whole cube of NNMLs. The prover
HYPNO implements the optimal calculi for NNMLs recently introduced in [4].
These calculi handle hypersequents, where a hypersequent represents intuitively
a metalogical disjunction of sequents; sequents in themselves can be interpreted
as formulas of the language. While the hypersequent structure is not strictly
needed for proving formulas, it ensures a direct computation of a countermodel
from one failed proof-branch. Consequently, the prover takes as input a for-
mula and either returns a proof or a countermodel of it in the bi-neighbourhood
semantics mentioned above. The Prolog implementation closely corresponds to
the calculi: each rule is encoded by a Prolog clause of a prove predicate. This
correspondence ensures in principle both the soundness and completeness of the
theorem prover. Termination of proof search is obtained by preventing redun-
dant application of rules. Although there are no benchmarks in the literature, the
performance seems promising, in particular it outperforms the theorem prover
PRONOM based on labelled calculi.

The program HYPNO as well as all the Prolog source files, including those
used for the performance evaluation, are available for free usage and download
at http://193.51.60.97:8000/HYPNO/.

2 Axioms, semantics, and hypersequent calculi
We present first the axiomatization and semantics of NNMLs of the classical
cube and then the hypersequent calculi implemented by HYPNO.

Given a countable set of propositional variables Atm, the formulas of the
language L of NNMLs are built as follows: A ::= p | ⊥ | > | A∨A | A∧A | A→
A | 2A, where p ∈ Atm. The minimal NNML E is defined in L by extending
classical propositional logic with the rule RE below. The systems of the classical
cube are then obtained by adding to E any combination of axioms M, C, and
N. We obtain in this way eight distinct logics (see the classical cube, below on
the right), where the top system EMCN coincides with normal modal logic K.

A↔ BRE
2A↔ 2B

M 2(A ∧B)→ 2A

C 2A ∧2B → 2(A ∧B)

N 2>
E

EM

EC EN

EMC EMN

ECN

EMCN (K)

Coming to the semantics, we consider the bi-neighbourhood models [6]. As a
difference with standard neighbourhood semantics, in the bi-neighbourhood one,
worlds are equipped with sets of pairs of neighbours which can be thought as
lower and upper approximations of neighbourhood in the standard semantics.

Definition 1. A bi-neighbourhood model is a tuple M = 〈W,Nb,V〉, where
W is a non-empty set of worlds, V is a valuation function, and Nb is a bi-
neighbourhood function W −→ P(P(W)×P(W)). We say thatM is a M-model
if (α, β) ∈ Nb(w) implies β = ∅, it is a N-model if for all w ∈ W there is α ⊆ W
such that (α, ∅) ∈ Nb(w), and it is a C-model if (α1, β1), (α2, β2) ∈ Nb(w)
implies (α1 ∩α2, β1 ∪ β2) ∈ Nb(w). The forcing relation for boxed formulas is as
follows: M, w
 2A if and only if there is (α, β) ∈ Nb(w) s.t. α ⊆ [A] ⊆ W \ β,
where [A] denotes the truth set of A in M.
Bi-neighbourhood models can be easily transformed into equivalent standard
neighbourhood models, and vice versa. Moreover, bi-neighbourhood semantics
characterises the whole cube of NNMLs [6], in the sense that a formula A is deriv-
able in E(M/C/N) if and only if it is valid in all bi-neighbourhood (M/N/C)-
models of the corresponding class.

The hypersequent calculi for NNMLs implemented by HYPNO are introduced
in [4]. Their syntax is as follows: a block is a structure 〈Σ〉, where Σ is a multiset
of formulas of L. A sequent is a pair Γ ⇒ ∆, where Γ is a multiset of formulas and
blocks, and ∆ is a multiset of formulas. A hypersequent is a multiset S1 | ... | Sn,
where S1, ..., Sn are sequents. Single sequents can be interpreted into the lan-
guage as: i(A1, ..., An, 〈Σ1〉, ..., 〈Σm〉 ⇒ B1, ..., Bk) =

∧
i≤nAi∧

∧
j≤m2

∧
Σj →∨

`≤k B` . We say that a sequent S is valid in a bi-neighbourhood model M
(written M |= S) if for all w ∈ M, M, w
 i(S). Moreover, a hypersequent
H is valid in M (M |= H) if M |= S for some S ∈ H, and it is valid in
(M/C/N-)models if it is valid in all models of that kind.

The calculi implemented by HYPNO are a minor variant of the ones in [4]:
they contain an additional arrow V used to represent that the formulas on the
left of V entails the conjunction (rather than their disjunction) of the formulas
on its right. By this modification, all rules of the calculi are at most binary; the
equivalence of the modified calculi with the original ones in [4] is straightforward.

The hypersequent calculi are defined by the rules in Fig. 1 (for propositional
rules we only show the initial sequents and the rules for implication). In par-
ticular: HE := propositional rules + 2L + 2R + V1 + V2; HEN := HE + N;
HEC := HE + C; HECN := HE + C + N; HM := propositional rules + 2L + M2R;
HMN := HM + N; HMC := HM + C; and HMCN := HM + C + N. In the following,
we denote by HE? any extension of HE.

init
G | p, Γ ⇒ ∆, p

⊥L
G | ⊥, Γ ⇒ ∆

>R
G | Γ ⇒ ∆,>

G | A→ B, Γ ⇒ ∆,A G | B,A→ B, Γ ⇒ ∆→L
G | A→ B, Γ ⇒ ∆

G | A, Γ ⇒ ∆,A→ B,B→R
G | Γ ⇒ ∆,A→ B

G | 〈A〉,2A, Γ ⇒ ∆
2L

G | 2A, Γ ⇒ ∆

G | 〈Σ〉, Γ ⇒ ∆,2B | Σ ⇒ B
M2R

G | 〈Σ〉, Γ ⇒ ∆,2B

G | 〈Σ〉, Γ ⇒ ∆,2B | Σ ⇒ B G | 〈Σ〉, Γ ⇒ ∆,2B | B V Σ
2R

G | 〈Σ〉, Γ ⇒ ∆,2B

G | A⇒ B
V1

G | A V B

G | A⇒ B G | A V Σ
V2 |Σ| ≥ 1

G | A V B,Σ

G | 〈>〉, Γ ⇒ ∆
N

G | Γ ⇒ ∆

G | 〈Σ,Π〉, 〈Σ〉, 〈Π〉, Γ ⇒ ∆
C

G | 〈Σ〉, 〈Π〉, Γ ⇒ ∆

Fig. 1: Rules of HE? .

3 Design of HYPNO

The prover HYPNO implements the calculi of Fig. 1. It is inspired by the “lean”
methodology of leanTAP [2], even if it does not follow its style in a rigorous
manner. The program comprises a set of clauses, each one of them implementing
a rule or an axiom of the mentioned calculi. The proof search is provided for free
by the mere depth-first search mechanism of Prolog, without any additional ad
hoc mechanism. Before presenting in details the code of the theorem prover, let
us discuss a general design choice.

As mentioned, HYPNO searches for a derivation of an input formula and in
case of failure, on demand, it produces a countermodel of it. The proof search
procedure is implemented by a predicate terminating_proof_search which
tries to generate a derivation of the given input formula. In case it fails, on
demand by the user, another predicate build_saturated_branch is invoked that
computes an open saturated branch from which a countermodel is extracted. The
predicate build_saturated_branch is in some sense “dual” of the proof search
one. We have chosen to implement a two-phase computation, instead of a single
one taking care of both tasks, for the following reason: a single-phase procedure
would need to carry over all information for extracting a countermodel anyway;
this information would be completely useless in case of a successful derivation
and would unacceptably overload proof-search. As matter of fact, the time spent
to “recompute” the saturated branch is negligible with respect to the overload of
a proof-search procedure storing also information for countermodel extraction.
By this choice we get a simpler and more readable code, and of course, more
suited for countermodel generation only “on demand”.

HYPNO represents an hypersequent with a Prolog list whose elements are
Prolog terms of the form singleSeq([Gamma,Delta],Additional), each one
representing a sequent in the hypersequent. Gamma, Delta, and Additional are in
turn Prolog lists: Gamma and Delta represent the left side and the right side of the
single sequent, respectively, whereas Additional keeps track of the rules already

applied to each sequent in order to ensure termination by avoiding multiple
redundant applications of the same rule to a given hypersequent. Elements of
Gamma and Delta are either formulas or Prolog lists representing blocks. Symbols
> and ⊥ are represented by constants true and false, respectively, whereas
connectives ¬, ∧, ∨,→, and 2 are represented by -, ˆ, ?, ->, and box. The symbol
of provability V in systems with axiom C is represented by =>. Propositional
variables are represented by Prolog atoms. As an example, the Prolog list

[singleSeq([[box (a ^ c), [true], [a,c]], [a, b, a -> b, box b]],
[n, right(a -> b), apdR([a,c],b)]), singleSeq ([[P], [P]] ,[])]

is used to represent the hypersequent 2(A∧C), 〈>〉, 〈A,C〉 ⇒ A,B,A∨B,2B |
P ⇒ P , to which the rules N, ∨R and 2R have been already applied, the last
one by using the block 〈A,C〉 and the formula 2B as the principal formulas. In
turn, no rule has been applied to P ⇒ P (the list Additional is empty).

Given a NNML formula F represented by the Prolog term f, HYPNO exe-
cutes the main predicate of the prover, called prove4, whose only two clauses
implement the functioning of HYPNO: the first clause checks whether F is valid
and, in case of a failure, the second one enables the graphical interface to invoke
a predicate called counter to compute a model falsifying F . In detail, the pred-
icate prove first checks whether the formula is valid by executing the predicate:

terminating_proof_search(Hyper, ProofTree).

This predicate succeeds if and only if the hypersequent represented by the list
Hyper is derivable inHE? . When it succeeds, the output term ProofTreematches
with a representation of the derivation found by the prover. As an example, in
order to prove that the sequent 2(A∧ (B ∨C))⇒ 2((A∧B)∨ (A∧C)) is valid
in E, one queries HYPNO with the goal:

terminating_proof_search([singleSeq([[box (a ˆ (b ? c))], [box ((a ˆ b) ?
(a ˆ c))]], []), ProofTree).

Each clause of terminating_proof_search implements an axiom or rule of the
sequent calculi HE? . To search for a derivation of a sequent Γ ⇒ ∆, HYPNO
proceeds as follows. First of all, if Γ ⇒ ∆ is an instance of an axiom, then
the goal will succeed immediately by using one of the clauses implementing the
axioms. As an example, the clause implementing init is as follows:

terminating_proof_search(Hyper,tree(axiom,PrintableHyper,no,no)):-
member(singleSeq([Gamma,Delta],_),Hyper),
member(P,Gamma), member(P,Delta),!,
extractPrintableSequents(Hyper,PrintableHyper).

The auxiliary predicate extractPrintableSequents is used just for a graphical
rendering of the hypersequent. If Γ ⇒ ∆ is not an instance of the axioms,
then the first applicable rule will be chosen, e.g. if Gamma contains a list Sigma
4 The user can run HYPNO without using the interface of the web application. To this
aim, he just needs to invoke the goal prove(f).

representing a block 〈Σ〉 ∈ Γ , and Delta contains box b representing that 2B ∈
∆, then the clause for 2R will be chosen, and HYPNO will be recursively invoked
on its premises. HYPNO proceeds in a similar way for the other rules. The
ordering of the clauses is such that the application of branching rules is postponed
as much as possible. As an example, here is the clause implementing 2R:

1. terminating_proof_search(Hyper,tree(rbox,PrintableHyper,Sub1,Sub2)):-
2. select(singleSeq([Gamma,Delta],Additional),Hyper,NewHyper),
3. member(Sigma,Gamma), is_list(Sigma),member(box B,Delta),
4. list_to_ord_set(Sigma,SigmaOrd), \+member(apdR(SigmaOrd,B),Additional),!,
5. terminating_proof_search([singleSeq([Sigma,[B]],[])|

[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Sub1),
6. terminating_proof_search([singleSeq([[],[B => Sigma]],[])|

[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Sub2),
7. extractPrintableSequents(Hyper,PrintableHyper).

Line 3 checks whether Gamma contains an item Sigma which is a list representing
a block and if a box formula box B belongs to the list Delta. Line 4 imple-
ments the restriction on the application of the rule used in order to ensure
a terminating proof search: if the Additional list contains the Prolog term
apdR(SigmaOrd,B)5, this means that the rule 2R has been already applied on
that sequent by using 2B and the block Σ, and HYPNO does no longer apply
it. Otherwise, the predicate terminating_proof_search is recursively invoked
on the two premises of the rule (lines 5 and 6), by introducing Σ ⇒ B and
B V Σ respectively. Since the rule is invertible, Prolog cut ! is used in line 4 to
eventually block backtracking.

When the predicate terminating_proof_search fails, then the initial for-
mula is not valid. On user demand, as recalled at the beginning of this sec-
tion, HYPNO extracts a model falsifying such a formula from an open saturated
branch, following the model extraction method described in [4]. The model is
computed by executing the predicate:

build_saturated_branch(Hyper, Model).

When this predicate succeeds, the variable Model matches a description of an
open saturated branch obtained by applying the rules of HE? to the initial for-
mula. Since the very objective of this predicate is to build an open saturated
hypersequent in the sequent calculus, its clauses are essentially the same as the
ones for the predicate terminating_proof_search, however rules introducing
a branching in a backward proof search are implemented by pairs of (disjoint)
clauses, each one attempting to build an open saturated hypersequent from the
corresponding premise. As an example, the following clauses implement the sat-
uration in presence of a block Σ in the left hand side and of a boxed formula
2B in the right hand side of a sequent:

build_saturated_branch(Hyper,Model):-

5 The predicate list_to_ord_set is used in order to check the applicability of the
rule by ignoring the order of the formulas in the block.

select(singleSeq([Gamma,Delta],Additional),Hyper,NewHyper),
member(Sigma,Gamma),is_list(Sigma),member(box B,Delta),
list_to_ord_set(Sigma,SigmaOrd),\+member(apdR(SigmaOrd,B),Additional),
build_saturated_branch([singleSeq([Sigma,[B]],[])|
[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Model).

build_saturated_branch(Hyper,Model):-
select(singleSeq([Gamma,Delta],Additional),Hyper,NewHyper),
member(Sigma,Gamma),is_list(Sigma),member(box B,Delta),
list_to_ord_set(Sigma,SigmaOrd),\+member(apdR(SigmaOrd,B),Additional),
build_saturated_branch([singleSeq([[],[B => Sigma]],[])|
[singleSeq([Gamma,Delta],[apdR(SigmaOrd,B)|Additional])|NewHyper]],Model).

HYPNO will first try to build a countermodel by considering the left premise
of 2R, whence recursively invoking the predicate build_saturated_branch on
the premise with the sequent Σ ⇒ B. In case of a failure, it will carry on the
saturation process by using the right premise of 2R with the sequent B V Σ.

Clauses implementing axioms for the predicate terminating_proof_search
are replaced by the last clause, checking whether the current sequent represents
an open and saturated hypersequent:

build_saturated_branch(Hyper,model(Hyper)):-\+instanceOfAnAxiom(Hyper).

Since this is the very last clause of build_saturated_branch, it is considered by
HYPNO only if no other clause is applicable, then the hypersequent is saturated.
The auxiliary predicate instanceOfAnAxiom checks whether the hypersequent
is open by proving that it is not an instance of the axioms. The second argument
matches a term model representing the countermodel extracted from Hyper.

The implementation of the calculi for extensions of E is very similar: given the
modularity of the calculi HE? , each system is obtained by just adding clauses for
both the predicates terminating_proof_search and build_saturated_branch
corresponding to the specific axioms/rules rules. However, we provide a different
Prolog file for each system of the cube. This choice is justified by two reasons:
first of all readiness of the code: one may be interested only in one specific system,
wishing to have all the rules in a stand-alone file. Second and more important,
an implementation of calculi for a family of logic cannot be completely modular:
the computation (both proof-search and countermodel extraction) is sensitive to
the order of application of the rules, so that the insertion of different rules may
result in different orders of application of the whole set of rules.

HYPNO can be used on any computer or mobile device through a web inter-
face implemented in php, which allows the user to choose the modal logic. When
a formula is valid, HYPNO builds a pdf file showing a derivation in the corre-
sponding calculus, as well as the LATEX source file. Otherwise, a countermodel
falsifying the initial formula is displayed. Prolog source codes are also available.

4 Performance of HYPNO
We have compared the performance of HYPNO with those of the prover PRONOM
[5], which deals with the same set of logics, obtaining promising results. We have

tested it by running SWI-Prolog, version 7.6.4, on an Apple MacBook Pro, 2.7
GHz Intel Core i7, 8GB RAM machine. First, we have tested HYPNO over
hundred valid formulas in E and considered extensions obtained by generalizing
schemas of valid formulas by varying some crucial parameters, like the modal de-
gree (the level of nesting of the 2 connective), already used for testing PRONOM.
For instance, we have considered the schemas (valid in all systems):

(2(2(A1∧(B1∨C1))∧. . .∧2(An∧(Bn∨Cn))))→ (2(2((A1∧B1)∨(A1∧C1))∧. . .∧2((An∧Bn)∨(An∧Cn)))

(2
n
C1 ∧ . . . ∧ 2

n
Cj ∧ 2

n
A)→ (2

n
A ∨ 2

n
D1 ∨ . . . ∨ 2

n
Dk)

obtaining encouraging results: Table 1 reports the number of timeouts of HYPNO
and PRONOM over a set of valid formulas in system E.

System 0,1 ms 1ms 100ms 1s 5s

HYPNO 91,50 % 78,91 % 28,23 % 9,52 % 5,78 %

PRONOM 85,71 % 77,55 % 57,82 % 31,16 % 19,80 %

Table 1: Percentage of timeouts over valid formulas in E.

HYPNO is able to answer in less than one second on more than the 90% of the
tests, whereas PRONOM is not even if we extend the time limit to 5 s.

We have also tested HYPNO on randomly generated formulas, fixing different
time limits, numbers of propositional variables, and levels of nesting of connec-
tives. We have compared the performances of HYPNO with those of PRONOM,
obtaining the results in Table 2: in each pair, the first number is the percent-
age of timeouts of HYPNO, the second number is the percentage of timeouts of
PRONOM given the fixed time limit.

Vars/Depth 1ms 10ms 1s 10s
3 vars - depth 5 4 - 5,58 % 0,78 - 1,76 % 0,02 - 0,48 % 0 - 0,22 %
3 vars - depth 7 23,78 - 25,18 % 10,86 - 20,16 % 3,16 - 14,40 % 2,02 - 12 %
7 vars - depth 10 45,22 - 44,94 % 34,36 - 42,36 % 19,06 - 30,30 % 16,06 - 20,34 %

Table 2: Percentage of timeouts in 5000 random tests (system E).

Also in case of formulas generated from 3 different atomic variables and with a
higher level of nesting (7), HYPNO is able to answer in more than 96% of the cases
within 1 s, against the 85% of PRONOM. We have repeated the experiments also
for all the extensions of E considered by HYPNO: complete results can be found
at http://193.51.60.97:8000/HYPNO/#experiments. Moreover, we are planning
to perform more accurate tests following the approach of [8], where randomly
generated formulas can be obtained by selecting different degrees of probability
about their validity.

5 Conclusions

We have presented HYPNO, a prover for the cube of NNMLs based on some
hypersequent calculi for these logics recently introduced. HYPNO produces both

proofs and countermodels in the bi-neighbourhood semantics. Although no spe-
cific optimisation has been implemented, the performances of HYPNO are promis-
ing. In the future we intend to extend possible optimisation, in particular to
minimize the size of countermodels. Moreover we intend to extend it to other
non-normal modal logics in the realm of deontic and agent-ability logics.

Acknowledgements. We thank the reviewers for their careful reading that
helped us to improve this paper. We are currently developing a new version of
HYPNO taking into account all the suggestions about its implementation.

References

1. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ’all’, belief means
’most’. Journal of Applied Non-Classical Logics 26(3), 173–192 (2016).
https://doi.org/10.1080/11663081.2016.1214804

2. Beckert, B., Posegga, J.: leantap: Lean tableau-based deduction. Journal of Au-
tomated Reasoning 15(3), 339–358 (1995). https://doi.org/10.1007/BF00881804,
https://doi.org/10.1007/BF00881804

3. Chellas, B.F.: Modal Logic. Cambridge University Press (1980)
4. Dalmonte, T., Lellmann, B., Olivetti, N., Pimentel, E.: Countermodel construction

via optimal hypersequent calculi for non-normal modal logics. In: Artëmov, S.N.,
Nerode, A. (eds.) LFCS 2020, Proceedings. Lecture Notes in Computer Science,
vol. 11972, pp. 27–46. Springer (2020)

5. Dalmonte, T., Negri, S., Olivetti, N., Pozzato, G.L.: PRONOM: proof-search and
countermodel generation for non-normal modal logics. In: Alviano, M., Greco, G.,
Scarcello, F. (eds.) AI*IA 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11946, pp. 165–179. Springer (2019)

6. Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: Bi-neighbourhood
semantics and its labelled calculi. In: Proceedings of AiML 12. pp. 159–178. College
Publications (2018)

7. Elgesem, D.: The modal logic of agency. Nordic Journal of Philosophical Logic
(1997)

8. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: Sat-based decision procedures for
classical modal logics. Journal of Automated Reasoning 28(2), 143–171 (2002)

9. Hansen, H.: Tableau games for coalition logic and alternating-time temporal logic–
theory and implementation. Master’s thesis, University of Amsterdam (2004)

10. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak
modal systems. Studia Logica 65, 121–145 (2000)

11. Lellmann, B.: Combining monotone and normal modal logic in nested sequents–
with countermodels. In: Proceedings of TABLEAUX 2019. pp. 203–220. Springer
(2019)

12. Pacuit, E.: Neighborhood semantics for modal logic. Springer (2017)
13. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and

Computation 12(1), 149–166 (2002)
14. Vardi, M.Y.: On epistemic logic and logical omniscience. In: Theoretical aspects of

reasoning about knowledge. pp. 293–305. Elsevier (1986)

