
Hilbert’s Tenth Problem in Coq
Dominique Larchey-Wendling
Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France
dominique.larchey-wendling@loria.fr

Yannick Forster
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
forster@ps.uni-saarland.de

Abstract
We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations
over natural numbers, in Coq’s constructive type theory. To do so, we give the first full mechanisation
of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable
problem – in our case by a Minsky machine – is Diophantine. We obtain an elegant and comprehensible
proof by using a synthetic approach to computability and by introducing Conway’s FRACTRAN
language as intermediate layer.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Type theory

Keywords and phrases Hilbert’s tenth problem, Diophantine equations, undecidability, computability
theory, reduction, Minsky machines, Fractran, Coq, type theory

Supplement Material Coq formalisation of all results: https://uds-psl.github.io/H10
Coq library of undecidable problems: https://github.com/uds-psl/coq-library-undecidability

Funding Dominique Larchey-Wendling: partially supported by the TICAMORE project (ANR grant
16-CE91-0002).

Acknowledgements We would like to thank Gert Smolka, Dominik Kirst and Simon Spies for helpful
discussion regarding the presentation.

1 Introduction

Hilbert’s tenth problem (H10) was posed by David Hilbert in 1900 as part of his famous
23 problems [15] and asked for the “determination of the solvability of a Diophantine
equation.” A Diophantine equation1 is a polynomial equation over natural numbers (or,
equivalently, integers) with constant exponents, e.g. x2 + 3z = yz + 2. When Hilbert asked
for “determination,” he meant, in modern terms, a decision procedure, but computability
theory was yet several decades short of being developed.

The first undecidable problems found by Church, Post and Turing were either native to
mathematical logic or dependent on a fixed model of computation. H10, to the contrary,
can be stated to every mathematician and its formulation is independent from a model of
computation. Emil Post stated in 1944 that H10 “begs for an unsolvability proof” [26]. From
a computational perspective, it is clear that H10 is recursively enumerable (or recognisable),
meaning there is an algorithm that halts on a Diophantine equation iff it is solvable.

Post’s student Martin Davis conjectured that even the converse is true, i.e. that every
recognisable set is also Diophantine. More precisely, he conjectured that if A ⊆ Nk is
recognisable then (a1, . . . , ak) ∈ A↔ ∃x1 . . . xn, P (a1, . . . , ak, x1, . . . , xn) = 0 holds for some
polynomial P in k + n variables. He soon improved on a result by Gödel [13] and gave a

1 Named after the Greek mathematician Diophantus of Alexandria, who started the study of polynomial
equations in the third century.

https://orcid.org/0000-0001-9860-7203
mailto:dominique.larchey-wendling@loria.fr
mailto:forster@ps.uni-saarland.de
https://uds-psl.github.io/H10
https://github.com/uds-psl/coq-library-undecidability
https://ticamore.logic.at/
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002

2 Hilbert’s Tenth Problem in Coq

proof of his conjecture, however requiring up to one bounded universal quantification [3]:
(a1, . . . , ak) ∈ A ↔ ∃z,∀y < z,∃x1 . . . xn, P (a1, . . . , ak, x1, . . . , xn, y, z) = 0. Davis and
Putnam [5] further improved on this, and showed that, provided a certain number-theoretic
assumption holds, every recognisable set is exponentially Diophantine, meaning variables are
also allowed to appear in exponents. Julia Robinson then in 1961 modified the original proof to
circumvent the need for the assumption, resulting in the DPR theorem [6], namely that every
recognisable set is exponentially Diophantine. Due to another result from Robinson [27], the
gap now only consisted of proving that there is a Diophantine equation exhibiting exponential
growth. In 1970, Yuri Matiyasevich showed that the Fibonacci sequence grows exponentially
while being Diophantine, closing the gap and finishing the proof of the theorem nowadays
called DPRM theorem, ultimately establishing that exponentiation is Diophantine itself [19]
(known as “Matiyasevich’s theorem”).

Even the most modern and simpler proofs of the DPRM theorem still require many
preliminaries and complicated number-theoretic ideas, for an overview see [22]. We formalise
one such proof as part of our ongoing work on a library of undecidable problems [10] in
the proof assistant Coq [29]. Since H10 is widely used as a seed [7, 14] for showing the
undecidability of problems using many-one reductions, this will open further ways of extending
the library. Given that our library already contains a formalisation of Minsky machines [11],
we follow the approach of Jones and Matijasevič [16], who use register machines, being very
well-suited since they already work on numbers. They encode full computations of register
machines as Diophantine equations in one single, monolithic step. To make the proof more
tractable for both mechanisation and explanation, we factor out an intermediate language,
John Conway’s FRACTRAN [2], which can simulate Minsky machines.

We first introduce three characterisations of Diophantine equations over natural numbers,
namely Diophantine logic DIO_FORM (allowing to connect Diophantine equations with
conjunction, disjunction and existential quantification), elementary Diophantine constraints
DIO_ELEM (a finite set of constraints on variables, oftentimes used for reductions [7, 14])
and single Diophantine equations DIO_SINGLE, including parameters, as described above.
H10 then asks about the solvability of single Diophantine equations with no parameters.

Technically, the reduction chain to establish the unsolvability of H10 starts at the halting
problem for single-tape Turing machines Halt, reduced to the Post correspondence problem
PCP in [8]. In previous work [11] we have reduced PCP to a specialised halting problem for
Minsky machines, which we use here in a slightly generalised form as MM. We then reduce
Minsky machine halting to FRACTRAN termination. FRACTRAN is very natural to describe
using polynomials, and the encoding does not rely on any complicated construction. The
technical difficulty then only lies in the Diophantine encoding of the reflexive-transitive closure
of a relation which follows from the direct elimination of bounded universal quantification,
given that the proof in [20] involves no detour via models of computation. In total, we obtain
the following chain of reductions to establish the undecidability of H10:

Halt � PCP � MM � FRACTRAN � DIO_FORM � DIO_ELEM � DIO_SINGLE � H10

In the present paper, we focus on explaining this factorisation of the proof and give some
details for the different stages. While we contribute Coq mechanisations of Matiyasevich’s
theorem and the elimination of bounded universal quantification, we treat them mainly as
black-boxes and only elaborate on their challenging formalisation rather than the proofs
themselves, a good explanation of which would anyways not fit in the given page limit.

To the best of our knowledge, we are the first to give a full verification of the DPRM
theorem and the undecidability of Hilbert’s tenth problem in a proof assistant. We base the
notion of recognisability in the DPRM theorem on Minsky machines.

https://github.com/uds-psl/coq-library-undecidability

D. Larchey-Wendling and Y. Forster 3

When giving undecidability proofs via many-one reductions, it is critical to show that all
reduction functions are actually computable. We could in theory verify the computability
of all functions involved using an explicit model of computation. In pen-and-paper proofs,
this approach is however almost never used, because implementing high-level mathematical
transformations as provably correct low-level programs is a daunting task. Instead, we rely
on a synthetic approach [8, 9, 11] based on the computability of all functions definable in
Coq’s constructive type theory, which is closer to the practice of pen-and-paper proofs. In
this approach, a problem P is considered undecidable if there is a reduction from an obviously
undecidable problem, e.g. Halt � P .

The axiom-free Coq formalisation of all the results in this paper is available online and
the main lemmas and theorems in the pdf version of the paper are hyper-linked with the
html version of the source code at https://uds-psl.github.io/H10. Starting from our
already existing library which included most of the Minsky machine code [11], the additional
code for proving the undecidability of H10 and the DPRM theorem consists of about 8k
loc including 3k loc for Matiyasevich’s results alone, together with a 4k loc addition to our
shared libraries; see Appendix A for more details. The paper itself can be read without
in-depth knowledge of Coq or type theory.

Contribution: Apart from the full formalisation, we consider the novel refactoring of the
proof via FRACTRAN a contribution to the explainability of the DPRM theorem.

Preliminaries: Regarding notation, we may write x.y for multiplication of natural numbers
x, y : N and we will leave out the symbol where convenient. We write LX for the type of
lists over X and l ++ l′ for the concatenation of two lists. We write Xn for vectors ~v over
type X with length n, and Fn for the finite type with exactly n elements. For p : Fn, we
write ~v[p] for the p-th component of ~v : Xn. Notations for lists are overloaded for vectors. If
P : X → P is a predicate (on X) and Q : Y → P is a predicate, we write P � Q if there is a
function f : X → Y s.t. ∀x : X, P x↔ Q(f x), i.e. a many-one reduction from P to Q.

2 Diophantine Relations

Diophantine relations are composed of polynomials over natural numbers. There are several
equivalent approaches to characterise these relations and oftentimes, the precise definition
is omitted from papers. Basically, one can form equations between polynomial expressions
and then combine these with conjunctions, disjunctions, and existential quantification.2 For
instance, these operations are assumed as Diophantine producing operators in e.g. [16, 19,
20, 21]. Sometimes, Diophantine relations are restricted to a single polynomial equation.
Sometimes, the exponentiation function x, y 7→ xy is assumed as Diophantine [16]. To
complicate the picture, Diophantine relations might equivalently range over Z (instead of N)
but expressions like xy implicitly assume that y never gets a negative value.

Although seemingly diverging, these approaches are not contradictory because in the end,
they characterise the same class of relations on natural numbers. However, mechanisation
does not allow for such implicit assumptions. To give some mechanisable structure to some
of these approaches, we propose three increasingly restricted characterisations of Diophantine
relations: Diophantine logic, elementary Diophantine constraints and single Diophantine
equations, between which we provide computable transformations in Sections 3 and 4.

2 Universal quantification or negation are not accepted as is.

https://uds-psl.github.io/H10

4 Hilbert’s Tenth Problem in Coq

2.1 Diophantine Logic
We define the types Dexpr of Diophantine expressions and Dform of Diophantine formulæ
for the abstract syntax of Diophantine logic. Diophantine expressions are polynomials built
from natural number constants and variables. An atomic Diophantine logic formula is just
expressing the identity between two Diophantine expressions and we combine those with
binary disjunction, binary conjunction, and existential quantification.

p, q : Dexpr ::= xi : V | n : N | p +̇ q | p ×̇ q A,B : Dform ::= p =̇ q | A ∧̇B | A ∨̇B | ∃̇A

The letters p, q ranges over expressions and the letters A,B range over formulæ. We use
standard De Bruijn syntax with variables x0, x1, . . . of type V := N for better readability.
If we have xi : V, we write x1+i for the next variable in V. As an example, the meta-level
formula ∃y, (y = 0 ∧ ∃z, y = z + 1) would be represented as ∃̇(x0 =̇ 0 ∧̇ ∃̇(x1 =̇ x0 +̇ 1)), i.e.
the variable xi refers to the i-th binder in the context.

We provide a semantics for Diophantine logic. Given a valuation for variables ν : V→ N,
we define the interpretation JpKν : N of the expression p : Dexpr by recursion:

JxiKν := ν xi JnKν := n Jp +̇ qKν := JpKν + JqKν Jp ×̇ qKν := JpKν × JqKν

The interpretation of formulæ cannot be done with a constant valuation ν : V→ N because
of existential quantifiers. The interpretation JAKν of the formula A : Dform is given by the
following recursive rules:

JA ∧̇BKν := JAKν ∧ JBKν Jp =̇ qKν := JpKν = JqKν
JA ∨̇BKν := JAKν ∨ JBKν J∃̇AKν := ∃n : N, JAKn·ν

with
{
n·ν (x0) := n

n·ν (x1+i) := ν xi

where n·ν : V→ N is the standard De Bruijn extension of a valuation ν by n.
We give a first formal characterisation of Diophantine polynomial expressions DP and

Diophantine relations DR. Diophantine polynomials are represented by some members of
type f : (V → N) → N mapping valuations ν to values fν : N which must moreover arise
as instances of λν.JpKν for some p : Dexpr. And Diophantine relations are members of type
R : (V→ N)→ P arising as instances of λν.JAKν . We give an informative content to these
sub-types of (V → N) → N and (V → N) → P to be able to do some computations with
the witness (either p or A) of Diophantineness, typically when moving to another formal
representation like elementary Diophantine constraints in Section 3.

I Definition 1. We define the class of Diophantine polynomials and Diophantine relations
as informative sub-types of (V→ N)→ N and (V→ N)→ P respectively:

DP f :=
∑
p : Dexpr,

(
∀ν, JpKν = fν

)
DR R :=

∑
A : Dform,

(
∀ν, JAKν ↔ R ν

)
Note that Σ denotes type-theoretic dependent pairs. Hence an inhabitant w of DR R is a

(dependent) pair (A,HA) where A = π1(w) is a Diophantine formula and HA = π2(w) a proof
that JAK(·) and R are extensionally equivalent. With these definitions, we will show that the
sub-types DP and DR have the desired closure properties: DP contains variables, constants and
is closed under the + and × pointwise operators over (V→ N)→ N; DR contains polynomial
equations and is closed under conjunction, disjunction and existential quantification.

I Proposition 2. Let xi : V, n : N, and f, g : (V → N) → N be s.t. DP f and DP g hold.
Then DP (λν.ν xi), DP (λν.n), DP (λν.fν + gν) and DP (λν.fν × gν) hold.

I Proposition 3. Let f , g be s.t. DP f and DP g hold. Then DR (λν.True), DR (λν.False),
DR (λν.fν = gν), DR (λν.fν ≤ gν), DR (λν.fν < gν) and DR (λν.fν 6= gν) hold.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_var
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_cst
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_plus
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_mult
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_True
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_False
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_eq
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_le
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_lt
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_neq

D. Larchey-Wendling and Y. Forster 5

Proof. For e.g. λν. fν < gν , we first get the witnesses for wf : DP f and wg : DP g by the
projections pf := π1(wf) and pg := π1(wg). If we denote by ρ the “lift by one renaming”
ρ := λxi.x1+i and then the witness ∃̇

(
1+̇x0 +̇ρ (pf) =̇ ρ (pg)

)
can be used for λν. fν < gν . J

From a mechanisation point of view, having to provide explicit witnesses is a painful task
and we now describe how it can be almost entirely automated. We use the Coq unification
mechanism to analyse a meta-level expression of Diophantine shape and reflect it into the
corresponding object-level witness of types either Dexpr or Dform together with the proof that
it is an appropriate witness. The following lemma provides a way to process a goal such as
DR R depending on the meta-level syntax of R.

I Lemma 4. Let R,S : (V→ N)→ P and T : N→ (V→ N)→ P. We have the maps:
1. DR R→ DR S → DR(λν.R ν ∧ S ν) 3. DR

(
λν.T (ν x0) (λxi.ν x1+i)

)
→ DR

(
λν.∃u, T u ν

)
2. DR R→ DR S → DR(λν.R ν ∨ S ν) 4. (∀ν, S ν ↔ Rν)→ DR R→ DR S.

With maps 1–3, we cope with conjunction, disjunction, existential quantification. Atomic
or already established Diophantine relations are captured by Propositions 2 and 3 or later
established results which are declared as hints for Coq proof-search tactics. The map number 4
provides a way to replace DR S with DR R once a proof that they are logically equivalent is
established. Hence, if S cannot be analysed because it does not currently have a Diophantine
shape, it can still be replaced by an equivalent relation R, hopefully better behaved.

2.2 Example of a Mechanised Diophantineness Proof
With the example of the “does not divide” relation u - v := ¬(∃k, v = k × u), we describe
how to use those results to automate the production of the object-level DR witness A of
Definition 1 from the meta-level representation of a relation of Diophantine shape.

I Proposition 5. ∀f g : (V→ N)→ N, DP f → DP g → DR (λν.fν - gν).

Proof. u - v := ¬(∃k, v = k×u) obviously is not in Diophantine shape. We thus first prove the
equivalence u - v ↔ (u = 0∧v 6= 0∨∃a b, v = a×u+b∧0 < b < u) and this new expression now
has a Diophantine shape, relying on the Diophantine shape of Euclidean division. Using this
equivalence in combination with map 4 of Lemma 4, we replace the goal DR (λν.fν - gν) with
DR (λν.fν = 0 ∧ gν 6= 0 ∨ ∃a b, gν = a× fν + b ∧ 0 < b ∧ b < fν) and then apply maps 1–3 of
Lemma 4 until a shape such as those of Proposition 3 appears. J

Once established, we can add the map DP f → DP g → DR (λν.fν - gν) in the Diophantine
hint database so that later encountered proof goals DR (λν.fν - gν) can be immediately solved.
We implemented the Coq tactic dio_rel_auto to automate all this work. Apart from the
equivalence for u - v and its proof, which cannot be guessed, the rest is effortless.

The recovery of witnesses of Definition 1 from meta-level syntax is automatic and hidden
by the use of the dio_rel_auto tactic associated with the ever growing hint database. This
way, we can proceed as in e.g. Matiyasevich papers where he just transforms a relation into
an equivalent Diophantine shape, accumulating more and more Diophantine shapes on the
way. This is a very welcome simplification over having to program witnesses by hand.

2.3 Exponentiation and Bounded Universal Quantification
For now, we introduce the elimination of the exponential relation and then of bounded
universal quantification as black boxes expressed in the theory of Diophantine relations.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_conj
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_exst
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_disj
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_equiv
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_ndivides

6 Hilbert’s Tenth Problem in Coq

However we do contribute implementations for both of these hard results. It is not possible
for these two mechanised proofs to be described in detail given the page limit. Nonetheless
we postpone some remarks and discussions about these proofs in Section 5.

I Theorem 6 (Exponential). ∀f g h, DP f → DP g → DP h→ DR
(
λν.fν = ghνν

)
.

To prove it, one needs a meta-level Diophantine shape for the exponential relation, the
proof of which is nothing short of extraordinary. This landmark result is due to Matiya-
sevich [19], but we have implemented the shorter and more up-to-date proof of [21].

I Theorem 7 (Bounded U. Quantification). For f : (V→ N)→ N and T : N→ (V→ N)→ P,
we have a map DP f → DR

(
λν.T (ν x0) (λxi.ν x1+i)

)
→ DR

(
λν.∀u, u < fν → T u ν

)
.

This map can be compared with map 3 of Lemma 4 and allows to recognise bounded
universal quantification as a legitimate Diophantine shape. We have implemented the direct
proof of Matiyasevich [20] which does not involve a detour through a model of computation.
Notice that the bound fν in ∀u, u < fν → . . . is not constant otherwise the elimination of
the quantifier would proceed as a simple reduction to a finitary conjunction.

2.4 Reflexive-Transitive Closure is Diophantine
With these tools – elimination of the exponential relation and of bounded universal quantific-
ation – we can show that the reflexive and transitive closure of a Diophantine binary relation
is itself Diophantine. We assume a binary relation R : N → N → P over natural numbers.
The Diophantineness of R can be formalised by assuming that e.g. λν.R (ν x1) (ν x0) is
a Diophantine relation. We show that the i-th iterate of R is Diophantine (where i is
non-constant).

I Lemma 8. Under hypothesis HR : DR
(
λν.R (ν x1) (ν x0)

)
, for any f, g, i : (V→ N)→ N

we have a map DP f → DP g → DP i→ DR
(
λν.Riν fν gν

)
.

Proof. Using Euclidean division, we define the is_digit c q n d predicate stating that d is
the n-th digit of the base q development of number c, as a Diophantine sentence:

is_digit c q n d := d < q ∧ ∃a b t, t = qn ∧ c = (a.q + d).t+ b ∧ b < t

The Diophantineness of this follows from Theorem 6. Then we define the is_seq R c q i

predicate stating that the first i + 1 digits of c in base q form an R-chain, again with a
Diophantine expression by HR and Theorem 7:

is_seq R c q i := ∀n, n < i→ ∃u v, is_digit c q n u ∧ is_digit c q (1 + n) v ∧R u v

Then we encode Ri u v by stating that there exists a (large enough) q and a number c such
that the first i+ 1 digits of c in base q form an R-chain starting at u and ending at v:

Ri u v ↔ ∃q c, is_seq R c q i ∧ is_digit c q 0 u ∧ is_digit c q i v

and this expression is accepted as Diophantine by Lemma 4. J

We fill in Lemma 8 in the Diophantine hint database and we derive the Diophantineness of
the reflexive-transitive closure as a direct consequence of the equivalence R∗ u v ↔ ∃i, Ri u v.

I Theorem 9. For any binary relation R : N → N → P and any f, g : (V → N) → N, we
have the map DP f → DP g → DR

(
λν.R (ν x1) (ν x0)

)
→ DR

(
λν.R∗ fν gν

)
.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_expo.html#dio_rel_expo
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_bounded.html#dio_rel_fall_lt
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_rt_closure.html#dio_rel_rel_iter
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_rt_closure.html#dio_rel_rt

D. Larchey-Wendling and Y. Forster 7

3 Elementary Diophantine Constraints

Elementary Diophantine constraints are very simple equations where only one instance of
either +̇ or ×̇ is allowed. We give a direct proof that any Diophantine logic formula is
semantically equivalent to the satisfiability of a list of elementary Diophantine constraints.

Starting from two copies of N, one called U with u, v, w ranging over U for existentially
quantified variables, and another one V = {x0, x1, . . .} for parameters, we define the type of
elementary Diophantine constraints by:

c : Dcstr ::= u =̇ n | u =̇ v | u =̇ xi | u =̇ v +̇ w | u =̇ v ×̇ w where n : N

Notice that these constraints do not have a “real” inductive structure, they are flat and of
size either 3 or 5. Given two interpretations, ϕ : U → N for variables and ν : V → N for
parameters, it is trivial to define the semantics JcKϕν : P of a single constraint c of type Dcstr:

Ju =̇ nKϕν := ϕu = n Ju =̇ vKϕν := ϕu = ϕv Ju =̇ v +̇ wKϕν := ϕu = ϕv + ϕw

Ju =̇ xiKϕν := ϕu = ν xi Ju =̇ v ×̇ wKϕν := ϕu = ϕv × ϕw

Given a list l : LDcstr of constraints, we write JlKϕν when all the constraints in l are
simultaneously satisfied, i.e. JlKϕν := ∀c, c ∈ l→ JcKϕν . We show the following result:

I Theorem 10. For any Diophantine formula A : Dform one can compute a list of elementary
Diophantine constraints l : LDcstr such that ∀ν : V→ N, JAKν ↔ ∃ϕ : U→ N, JlKϕν .

I.e. for any given interpretation of parameters ν, JAKν holds if and only if the constraints in
l are simultaneously satisfiable. Hence any Diophantine logic formula is equivalent to the
satisfiability of the conjunction of finitely many elementary Diophantine constraints.

The proof of Theorem 10 spans the rest of this section. We will strengthen the result a
bit to be able to get an easy argument by induction on A.

I Definition 11. Given a relation R : (V → N) → P and an interval [ua, ua+n[⊆ U, a
representation of R in [ua, ua+n[is given by:
1. a list E : LDcstr of constraints and a reference variable r : U;
2. proofs that r and the (existentially quantified) variables occurring in E belong to [ua, ua+n[;
3. a proof that the constraints in E are always (simultaneously) satisfiable, i.e. ∀ν∃ϕ JEKϕν ;
4. a proof that the list (r =̇ 0) :: E is equivalent to R, i.e. ∀ν, R ν ↔

(
∃ϕ, ϕ r = 0 ∧ JEKϕν

)
.

It is obvious that a representation of λν.JAKν in any interval [ua, ua+n[is enough to prove
Theorem 10 because of item 4 of Definition 11. But actually, computing such a representation
is simpler than proving Theorem 10 directly.3

I Lemma 12. For any a : N and any A : Dform, one can compute a representation of the
relation λν.JAKν in [ua, ua+n[for some value n ≤ 4|A|.4

Proof. We show the result by structural induction on A.
If A is p =̇ q with p, q : Dexpr then we encode p and q as a directed list of constraints. See
Appendix B for a detailed explanation on an example;

3 Proving Theorem 10 directly involves renamings of existential variables and might produce exponential
blow-up in the number of constraints when handled naively.

4 We denote the size of A with |A|. The actual statement in the code is a bit more complicated because
we also show that the number of elementary constraints can be bounded by 1 + 3|A|.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_elem.html#dio_formula_elem
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_elem.html#dio_repr_at
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_elem.html#dio_repr_at_form

8 Hilbert’s Tenth Problem in Coq

When A is B ∧̇C, we get a representation in [ua, ua+nA [by induction. Hence, let (EB , rB)
be the representation of B in [ua, ua+nB [. Then, inductively again, let (EC , rC) be a
representation of C at [ua+nB , ua+nB+nC [. We define rA := ua+nA+nB and EA := (rA =̇
rB +̇ rC) :: EB ++ EC and then (EA, rA) represents A = B ∧̇ C in [ua, ua+1+nB+nC [;5
The case of B ∨̇ C is similar: simply replace rA =̇ rB +̇ rC with rA =̇ rB ×̇ rC ;
We finish with the case when A is ∃̇B. Let (EB , rB) be a representation of B in [ua, ua+nB [.
Let σ be the substitution mapping parameters in V and defined by σ(x0) := ua+nB and
σ(x1+i) := xi; existential variables in U are left unmodified by this substitution. Then
(σ(EB), rB) is a representation of A = ∃̇B in [ua, ua+1+nB [.

This concludes the recursive construction of a representation of λν.JAKν . J

4 Single Diophantine Equations

In this section, we show how a list of elementary Diophantine constraints can be simulated
by a single identity between two Diophantine polynomials. We use the following well known
convexity identity to achieve the reduction, the proof of which can be found in Appendix C.

I Proposition 13. Let (p1, q1), . . . , (pn, qn) be a sequence of pairs in N× N. Then

n∑
i=1

2piqi =
n∑
i=1

p2
i + q2

i ↔ p1 = q1 ∧ · · · ∧ pn = qn.

We define Diophantine polynomials similar to the Diophantine expressions Dexpr of
Section 2.1 except that we now distinguish the types of bound variables (i.e. U) and of
parameters (or free variables) (i.e. V) and that the types U and V are not fixed copies of N
anymore, but type parameters of arbitrary value.

I Definition 14. The type of Diophantine polynomials Dpoly(U,V) and the type of single
Diophantine equations Dsingle(U,V) are defined by:

p, q : Dpoly(U,V) ::= u : U | xi : V | n : N | p +̇ q | p ×̇ q E : Dsingle(U,V) ::= p =̇ q

For ϕ : U → N and ν : V → N we define the semantic interpretations of polynomials
JpKϕν : N and single Diophantine equations JEKϕν : P in the obvious way.

I Theorem 15. For any list l : LDcstr of elementary Diophantine constraints, one can
compute a single Diophantine equation E : Dsingle(N,N) such that ∀ν∀ϕ, JEKϕν ↔ JlKϕν .

Proof. We write l = [p1 =̇ q1; . . . ; pn =̇ qn] and then use Proposition 13. In the code, we
moreover show that the size of E is linear in the length of l. If needed, one could also show
that the degree of the polynomial is less than 4. J

I Corollary 16. Let R : (V → N) → P. Assuming DR R, one can compute a single
Diophantine equation p =̇ q : Dsingle(N,V) such that ∀ν, R ν ↔ ∃ϕ, JpKϕν = JqKϕν .

Proof. Direct combination of Definition 1 and Theorems 10 and 15. In the formalisation, we
also show that the size of the obtained single Diophantine equation is linearly bounded by
the size of the witness formula contained in the proof of DR R. J

5 Since the intervals [ua, ua+nB [and [ua+nB , ua+nB+nC [are built disjoint, there is no difficulty in merging
valuations whereas this usually involves renamings when existential variables are not carefully chosen.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#convex_n_eq
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_polynomial
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_elem_single
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_rel_single

D. Larchey-Wendling and Y. Forster 9

We have shown that the automation we designed to recognise relations of Diophantine
shape entail that these relations are also definable by satisfiability of a single equation
between Diophantine polynomials, so these tools are sound w.r.t. a formally restrictive
characterisation of Diophantineness. One could argue that the above existential quantifier
∃ϕ encodes infinitely many existential quantifiers but it can easily be replaced by finitely
many existential quantifiers over the bound variables that actually occur in p or q.

I Proposition 17. For any single Diophantine equation p =̇ q : Dsingle(N,V), one can
compute n : N and a new single Diophantine equation p′ =̇ q′ : Dsingle(Fn,V) such that for
any ν : V→ N, (∃ϕ : N→ N, JpKϕν = JqKϕν)↔ (∃ϕ : Fn → N, Jp′Kϕν = Jq′Kϕν).

Proof. We choose n greater that the number of bound variables which occur in either p or q.
Then this subset of N can be faithfully embedded into the finite type Fn and we use such a
renaming to compute (p′, q′). Remark that the size of (p′, q′) is the same as that of (p, q). J

By Corollary 16 and Proposition 17, we see that a Diophantine logic formula A : Dform
potentially containing inner existential quantifiers and representing the Diophantine relation
λν.JAKν can effectively be reduced to a single Diophantine equation p′ =̇ q′ : Dsingle(Fn,V)
such that JAKν ↔ ∃ϕ : Fn → N, Jp′Kϕν = Jq′Kϕν . Because Fn is the finite type of n elements, the
(higher order) existential quantifier ∃ϕ simply encodes n successive (first order) existential
quantifiers. The existential quantifiers that occur deep inside A are not erased by the
reduction, they are moved at the outer level and are ultimately understood as solvability for
some polynomial equation of which the parameters match the freely occurring variables of A.

5 Remarks on the Implementation of Matiyasevich’s Theorems

Matiyasevich’s theorem stating that there is a Diophantine description of the exponential
relation x = yz is a masterpiece. It was the last missing step finishing the line of work by
Davis, Putnam and Robinson which started with Davis’ conjecture in 1953. Already in 1952,
Julia Robinson discovered that in order to show the exponential relation Diophantine, it
suffices to find a single binary Diophantine relation exhibiting exponential growth [27], a
so-called Robinson predicate, i.e. a predicate J(u, v) in two variables s.t. J(u, v) implies
v < uu and for every k there are u, v with J(u, v) and v > uk. Robinson’s insight meant
the only thing missing to prove what is nowadays called the DPRM theorem, was a single
polynomial equation capturing any freely chosen Robinson predicate. Similar to other famous
hard problems of mathematics, the question is easy to state, but from the start of the study of
Diophantine equations to the late 1960s, no such relation was known, rendering the problem
one of the most baffling questions for mathematicians and computer scientists alike.

In 1970 [19], Yuri Matiyasevich discovered that v = fib2u is both a Robinson predicate
and Diophantine. Here (fibn)n∈N is the well known Fibonacci sequence defined by the second
order recurrence relation fib0 = 0, fib1 = 1 and fibn+2 = fibn+1 + fibn. Combined with
previous results, this concluded the multi-decades effort to establish the Diophantineness of
all recursively enumerable predicates, implying a negative solution to Hilbert’s tenth problem.
That proof which included the original proof of Matiyasevich [19] was later simplified. For
instance, exploiting similar ideas but in the easier context of the solutions of another second
order equation – namely Pell’s equations x2− (a2− 1)y2 = 1 with parameter a > 1, – Martin
Davis [4] gave a standalone proof of the DPRM-theorem where recursively enumerable
predicates are characterised by a variant of µ-recursive functions. In that paper, Davis also
provided a proof of the admissibility of bounded universal quantification using the Chinese

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_poly_eq_pos

10 Hilbert’s Tenth Problem in Coq

remainder theorem to encode finite sequences of numbers. There exists more recent and
simpler proofs of this admissibility result as well, see e.g. [20].

Before we discuss the mechanisation of the Diophantineness of both the exponential
relation and of bounded universal quantification, we want to remark on the difficulty of
mechanising the former proof. Both on its own and as a stepping stone towards the
negative solution to Hilbert’s tenth problem, it is clear that Matiyasevich’s theorem was an
extremely difficult question which required tremendous intellectual resources to be solved.
The mechanisation of a modernised form of the proof, although not trivial, cannot be
compared to the difficulty of finding a solution. In particular, the modern proof relies on
very mature background theories, lowering the number of possible design choices for the
mechanisation. Moreover, very detailed pen and paper accounts of the proof are available,
which can be followed closely.

An aspect that is more challenging in mechanisation than on paper are proofs regarding
the computability of certain functions. Since paper proofs oftentimes rely on a vague notion
of algorithm, most of the reasoning about these algorithms is hand-waved away by computer
scientists, relying on the implicit understanding of what is an algorithm. By using a synthetic
approach to computability [8, 9, 11], we make the notion of an algorithm precise and thus
enable mechanisation, at the same time circumventing the verification of low-level programs.

5.1 Exponential is Diophantine (Theorem 6)
For our mechanised proof, we rely on a more recent account of Matiyasevich’s theorem
from [21], which, among the many options we considered, seemed the shortest. The proof
employs Pell’s equation x2 − bxy + y2 = 1 for b ≥ 2. We use the second order recurrence
relation αb(−1) = −1, αb(0) = 0 and αb(n + 2) = bαb(n + 1) − αb(n) to describe the set
of solutions of Pell’s equation by

{
(αb(n), αb(n + 1)) | n ∈ N

}
. The recurrence can be

characterised by the following square 2× 2 matrix equation:

Ab(n) = (Bb)n with Ab(n) :=
(
αb(n+ 1) −αb(n)
αb(n) −αb(n− 1)

)
and Bb :=

(
b −1
1 0

)
Then, studying the properties of the sequence n 7→ αb(n) in N or Z, one can show that
α2(n) = n and n 7→ αb(n) grows exponentially for b ≥ 3. Studying the properties of the
same sequence in Z/pZ (for varying values of the modulus p), one can for instance show that
n = α2(n) ≡ αb(n) mod b−2, which relates n and αb(n) modulo (b−2). With various intricate
but elementary results,6 such as e.g. αb(k) | αb(m)↔ k | m and α2

b(k) | αb(m)↔ kαb(k) | m
(both for b ≥ 2 and any k,m ∈ N), one can show that a, b, c 7→ 3 < b ∧ a = αb(c) has a
Diophantine representation. In our formalisation, we get a Diophantine logic formula of size
490 as a witness (see dio_rel_alpha_size).

Once αb(n) is proven Diophantine, one can recover the exponential relation x, y, z 7→ x =
yz using the eigenvalue λ of the matrix Bb which satisfies λ2− bλ−1 = 0. By wisely choosing
m = bq − q2 − 1, one gets λ ≡ q mod m and thus, using the corresponding eigenvector, one
derives qαb(n)−αb(n− 1) ≡ qn mod m. For a large enough value of m, hence a large enough
value7 of b, this gives a Diophantine representation of qn. In our code, we get a Diophantine
logic formula of size 1689 as a witness (see dio_rel_expo_size).

6 by elementary we certainly do not mean either simple or obvious, but we mean that they only involve
standard tools from modular and linear algebra.

7 the largeness of which is secured using α itself again, but with other input values.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_expo.html#dio_rel_alpha_size
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_expo.html#dio_rel_expo_size

D. Larchey-Wendling and Y. Forster 11

The main libraries which are needed to solve Pell’s equation and characterise its solutions
are linear algebra (or at least square 2× 2 matrices) over commutative rings such as Z and
Z/pZ, a good library for modular algebra (Z/pZ), and the binomial theorem over rings.
Without the help of the Coq ring tactic, such a development would be extremely painful.
These libraries are then used again to derive the Diophantine encoding of the exponential.

5.2 Admissibility of Bounded Universal Quantification (Theorem 7)
As hinted earlier, we provide an implementation of the algorithm for the elimination of
bounded universal quantification described in [20]. It does not involve the use of a model of
computation, hence does not create a chicken-and-egg problem when used for the proof of
the DPRM theorem. The technique of [20] uses the exponential function and thus Theorem 6
(a lot), and a combination of arithmetic and bitwise operations over N through base 2 and
base 2q representations of natural numbers.

The Diophantine admissibility of bitwise operations over N is based on the relation
stating that every bit of a is lower or equal than the corresponding bit in b and denoted
a 4 b. The equation a 4 b ↔ Cab is odd (where Cab denotes the binomial coefficient) gives
a Diophantine representation for a 4 b and then bitwise operators are derived from 4
in combination with regular addition +, in particular, the digit by digit AND operation
called “projection.” To obtain that a 4 b holds if and only if Cab ≡ 1 mod 2, we prove
Lucas’ theorem [18] which allows for the computation of the binomial coefficient in base p.
It states that Cab ≡ C

an
bn
× · · · × Ca0

b0
mod p holds when p is prime and a = anp

n + · · · + a0
and b = bnp

n + · · ·+ b0 are the respective base p representations of a and b.8 A Diophantine
representation of the binomial coefficient can be obtained via the binomial theorem: Ckn is
the k-th digit of the development of (1 + q)n =

∑n
i=0 Cinqi in base q = 2n+1. This gives a

Diophantine representation using Theorem 6 and the relation is_digit defined for Lemma 8.
The rest of the admissibility proof for bounded universal quantification ∀i, i < n→ A is a

very nice encoding of vectors of natural numbers of type Nn into natural numbers N such that
regular addition + (resp. multiplication ×) somehow performs parallel/simultaneous additions
(resp. multiplications) on the encoded vectors. More precisely, a vector (a1, . . . , an) ∈
[0, 2q − 1]n of natural numbers is encoded as the “cipher” a1r

2 + a2r
4 + a3r

8 + · · ·+ anr
2n

with r = 24q. In these sparse ciphers, only the digits occurring at r2i are non-zero. We
remark that none of the parameters, including n or q, are constant in the encoding.

Besides a low-level inductive proof of Lucas’ theorem, the essential library for the removal
of bounded universal quantification consists of tools to manipulate the type N simultaneously
and smoothly both as (a) usual natural numbers and (b) sparse base r = 24q encodings of
vectors of natural numbers in [0, 2q − 1]. Notice that r is defined as r = 22q in [20] but we
favour the alternative choice r = 24q which allows for an easier soundness proof for vector
multiplication because there is no need to manage for digit overflows (see Appendix D).

A significant step in the Diophantine encoding of + and × on Nn is the Diophantine
encoding of u =

∑n
i=1 r

2i and u1 =
∑n+1
i=2 r

2i as the ciphers of the constant vectors (1, . . . , 1) ∈
Nn and (0, 1, . . . , 1) ∈ Nn+1 respectively, obtained by masking u2 with w =

∑2n+1

i=0 r
i and 2w.

Finally, it should be noted that prior to the elimination of the quantifier in ∀i, i < n→ A,
the Diophantine formula A is first normalised into a conjunction of elementary constraints
using Theorem 10, and then the elimination is performed on that list of elementary constraints,
encoding e.g. v0 =̇ v1 +̇ v2 and v0 =̇ v1 ×̇ v2 with their respective sparse cipher counterparts.

8 With the usual convention that Ca
b = 0 when a > b.

12 Hilbert’s Tenth Problem in Coq

6 Minsky Machines Reduce to FRACTRAN

In previous work, we have reduced the halting problem for Turing machines to PCP [8] and
on to a specialised halting problem for Minsky machines [11] in Coq. The specialised halting
problem asked whether a machine on a given input halts in a configuration with all registers
containing zeros. In order to define Minsky machine recognisability, we consider a general
halting problem which allows any final configuration. The adaption of the formal proofs
reducing PCP via binary stack machines to Minsky machines is quite straightforward and
reuses the certified compiler for low-level languages defined in [11].

We first show that one can remove self loops from Minsky machines, i.e. instructions
which jump to their own location, using the compositional reasoning techniques developed
in [11]. We then formalise the FRACTRAN language [2] and show how the halting problem
for Minsky machines can be encoded into the halting problem for FRACTRAN programs.
While the verification of Minsky machines can be complex and needs preliminary thoughts on
compositional reasoning, the translation from Minsky machines to FRACTRAN is elementary
and needs no heavy machinery.

6.1 Minsky Machines

We employ Minsky machines [23] with instructions ι : In ::= INC (α : Fn) | DEC (α : Fn) (p : N).
A Minsky machine with n registers is a sequence of consecutively indexed instructions
s : ι0; . . . s + k : ιk; represented as a pair (s : N, [ι0; . . . ; ιk] : L In). Its state (i, ~v) is a
program counter (PC) value i : N and a vector of values for registers ~v : Nn. INC α increases
the value of register α and the PC by one. DEC α p decreases the value of register α by
one if that is possible and increases the PC, or, if the register is already 0, jumps to PC
value p. Given a Minsky machine (s, P), we write (s, P) //M (i1, ~v1) �n (i2, ~v2) when (s, P)
transforms state (i1, ~v1) into (i2, ~v2) in n steps of computation. For (s, P) to do a step in
state (i, ~v) the instruction at label i in (s, P) is considered. When a label i is outside of the
code of (s, P) we write out i (s, P) and in that case (and only that case), no computation
step can occur. We define the halting problem for Minsky Machines as

MM
(
n : N, P : L In, ~v : Nn

)
:= (1, P) //M (1, ~v) ↓

where (s, P) //M (i, ~v) ↓ := ∃n j ~w, (s, P) //M (i, ~v) �n (j, ~w) ∧ out j (s, P), meaning that
the machine (s, P) has a terminating computation starting at state (i, ~v). We refer to [11]
for a more in-depth formal description of those counter machines. Note that the halting
problem defined there is more specific than the problem MM above defined but both are
proved undecidable in our library.

We say that a machine has a self-loop if it contains an instruction of the form i : DEC α i,
i.e. jumps to itself in case the register α has value 0, leading necessarily to non-termination.
For every machine P with self-loops, we can construct an equivalent machine Q using one
additional register α0 with constant value 0, which has the same behaviour but no self-loops.
Since the effect of a self loop i : DEC α i is either decrement and move to the next instruction
at i+1 if α > 0 or else enter in a forever loop at i, it is easily simulated by a jump to a length-2
cycle, i.e. replacing i : DEC α i with i : DEC α j and adding j : DEC α0 (j + 1); j + 1 : DEC α0 j

somewhere near the end of the program.

I Theorem 18. Given a Minsky machine P with n registers one can compute a machine Q
with 1+n registers and no self loops s.t. for any ~v, (1, P) //M (1, ~v) ↓ ↔ (1, Q) //M (1, 0 :: ~v) ↓.

https://uds-psl.github.io/H10/website/Undecidability.ILL.Mm.mm_defs.html#MM_HALTS_ON_ZERO
https://uds-psl.github.io/H10/website/Undecidability.ILL.Mm.mm_defs.html#MM_HALTS_ON_ZERO
https://uds-psl.github.io/H10/website/Undecidability.ILL.Mm.mm_defs.html#MM_HALTING
https://uds-psl.github.io/H10/website/Undecidability.ILL.UNDEC.html#PCP_MM_HALTS_ON_ZERO
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.mm_no_self.html#mm_remove_self_loops

D. Larchey-Wendling and Y. Forster 13

Proof. We explain how any Minsky machine (1, P) with n registers can be transformed into
an equivalent one that uses an extra 0 valued spare register α0 = 0 ∈ F1+n and avoids self
loops. Let k be the length of P and let P ′ be the Minsky machine with 1 +n registers defined
by performing a 1-1 replacement of instructions of (1, P):

instructions of the form i : INC α are replaced by i : INC (1 + α);
self loops i : DEC α i are replaced by i : DEC (1 + α) (2 + k);
proper inside jumps i : DEC α j for i 6= j and 1 ≤ j ≤ k are replaced by i : DEC (1 + α) j;
and outside jumps i : DEC α j for j = 0 ∨ k < j are replaced by i : DEC (1 + α) 0.

Then we define Q := P ′ ++ [DEC α0 0; DEC α0 (3 + k); DEC α0 (2 + k)]. Notice that P ′ is
immediately followed DEC α0 0, i.e. by an unconditional jump to 0 (because α0 has value 0), and
that (1, Q) ends with the length-2 cycle composed of 2+k : DEC α0 (3+k); 3+k : DEC α0 (2+k).
We show that (1, Q) is a program without self loops (obvious) that satisfies the required
simulation equivalence. Indeed, self loops are replaced by jumps to the length-2 cycle that
uses the unmodified register α0 to loop forever. One should just be careful that the outside
jumps of (1, P) do not accidentally fall into that cycle and this is why we redirect them all
to PC value 0. J

A predicate R : Nn → P is MM-recognisable if there exist m : N and a Minsky machine
P : L In+m of (n+m) registers such that for any ~v : Nn we have R ~v ↔ (1, P) //M (1, ~v ++~0) ↓.
The last m registers serve as spare registers during the computation. Notice that not allowing
for spare registers would make e.g. the empty predicate un-recognisable.9 It is possible to
limit the number of (spare) registers but that question is not essential in our development.

6.2 FRACTRAN
We formalise the language FRACTRAN, introduced as a universal programming language for
arithmetic by Conway [2]. A FRACTRAN program Q consists of a list of positive fractions
[p1/q1; . . . ; pn/qn]. The current state of a FRACTRAN program is just a natural number s.
The first fraction pi/qi in Q such that s.(pi/qi) is still integral determines the successor state,
which then is s.(pi/qi). If there is no such fraction in Q, the program terminates.

We make this precise inductively for Q being a list of fractions p/q : N× N:

q.y = p.x

(p/q ::Q) //F x � y

q - p.x Q //F x � y

(p/q ::Q) //F x � y

i.e. at state x the first fraction p/q in Q where q divides p.x is used, and x is multiplied
by p and divided by q. For instance, the FRACTRAN program [5/7; 2/1] runs forever when
starting from state 7, producing the sequence 5 = 7.(5/7), 10 = 5.(2/1), 20 = 10.(2/1) ...10

We say that a FRACTRAN program Q = [p1/q1; . . . ; pn/qn] is regular if none of its
denominators is 0, i.e. if q1 6= 0, . . . , qn 6= 0. For a FRACTRAN program Q : L (N× N) and
s : N, we define the decision problem as the question “does Q halt when starting from s”:

FRACTRAN(Q, s) := Q //F s ↓ with Q //F s ↓ := ∃x, Q //F s �
∗ x ∧ ∀y, ¬Q //F x � y

Following [2], we now show how (regular) FRACTRAN halting can be used to simulate Minsky
machines halting. The idea is to use a simple Gödel encoding of the states of a Minsky

9 For any Minsky machine (1, P), if it starts on large enough register values, for instance if they are
all greater than the length of P , then no jump can occur and the machine terminates after its last
instruction executes. Such unfortunate behavior can be circumvented with a 0-valued spare register.

10No FRACTRAN program can ever stop when it contains a fraction having an integer value like 2/1.

14 Hilbert’s Tenth Problem in Coq

machine. We first fix two infinite sequences of prime numbers p0, p1, . . . and q0, q1, . . . all
distinct from each other. We define the encoding of n-register Minsky machine states as
(i, ~v) := piq

x0
0 . . . q

xn−1
n−1 where ~v = [x0, . . . , xn−1]:

To simulate the step semantics of Minsky machines for i : INC α, we divide the encoded
state by pi and multiply by pi+1 for the change in PC value, and increment the register
α by multiplying with qα, hence we add the fraction pi+1qα/pi;
To simulate i : DEC α j when ~v[α] = 1 + n we divide by pi, multiply by pi+1 and decrease
register α by dividing by qα, hence we add the fraction pi+1/piqα;
To simulate i : DEC α j when ~v[α] = 0 we divide by pi and multiply by pj . To make sure
that this is only executed when the previous rule does not apply, we add the fraction
pj/pi after the fraction pi+1/piqα.

In short, we define the encoding of labelled instructions and then programs as

(i, INC α) := [pi+1qα/pi]
(i, DEC α j) := [pi+1/piqα; pj/pi]

(i, [ι0; . . . ; ιk]) := (i, ι0) ++ · · ·++ (i+ k, ιk).

Notice that we only produce regular programs and that a self loop like i : DEC α i, jumping
on itself when ~v[α] = 0, will generate the fraction pi/pi potentially capturing any state (j, ~v)
even when j 6= i. So this encoding does not work on Minsky machines containing self loops.

I Lemma 19. If (1, P) has no self loops then (1, P) //M (1, ~v) ↓ ↔ (1, P) //F (1, ~v) ↓.

Proof. Let (i, P) be a Minsky machine with no self loops. We show that the simulation
of (i, P) by (i, P) is 1-1, i.e. each step is simulated by one step. We first show the forward
simulation, i.e. that (i, P) //M (i1, ~v1) � (i2, ~v2) entails (i, P) //F (i1, ~v1) � (i2, ~v2), by case
analysis. Conversely we show that if (i, P) //F (i1, ~v1) � st holds then st = (i2, ~v2) for some
(i2, ~v2) such that (i, P) //M (i1, ~v1) � (i2, ~v2). Backward simulation involves the totality
of MM one step semantics and the determinism of regular FRACTRAN one step semantics
combined with the forward simulation.

Using these two simulation results, the desired equivalence follows by induction on the
length of terminating computations. J

I Theorem 20. For any n-register Minsky machine P one can compute a regular FRACTRAN
program Q s.t. (1, P) //M (1, [x1; . . . ;xn]) ↓ ↔ Q //F p1q

x1
1 . . . qxnn ↓ holds for any x1, . . . , xn.

Proof. Using Theorem 18, we first compute a Minsky machine (1, P1) equivalent to (1, P)
but with one extra 0-valued spare register and no self loops. Then we apply Lemma 19 to
(1, P1) and let Q := (1, P1). The program Q is obviously regular and given ~v = [x1; . . . ;xn],
the encoding of the starting state (1, 0 :: ~v) for (1, P1) is p1q

0
0q
x1
1 . . . qxnn hence the result. J

This gives us a formal constructive proof that (regular) FRACTRAN is Turing complete
as a model of computation and is consequently undecidable.

I Corollary 21. Halt reduces to FRACTRAN.

Proof. Theorem 20 gives us a reduction fromMM to FRACTRAN which can be combined with
the reduction of Halt to PCP from [8] and a slight modification of PCP to MM from [11]. J

7 Diophantine Encoding of FRACTRAN

We show that a single step of FRACTRAN computation is a Diophantine relation.

https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.mm_fractran.html#mm_fractran_simulation
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.mm_fractran.html#mm_fractran_n
https://uds-psl.github.io/H10/website/Undecidability.H10.H10.html#Fractran_UNDEC

D. Larchey-Wendling and Y. Forster 15

I Lemma 22. For any FRACTRAN program Q : L (N × N) and any f, g : (V → N) → N,
there is a map DP f → DP g → DR (λν.Q //F fν � gν).

Proof. The map is built by induction on Q. If Q = [], then we show [] //F fν � gν ↔ False,
and thus DR (λν.Q //F fν � gν) by map 4 of Lemma 4 and Proposition 3. If Q is a composed
list Q = p/q ::Q′, then we show the equivalence(

p/q ::Q′
)
//F fν � gν ↔ q.gν = p.fν ∨ q - (p.fν) ∧Q′ //F fν � gν

and we derive DR (λν.Q //F fν � gν) by map 4 of Lemma 4, Proposition 5 and the induction
hypothesis, these last steps being automated by the dio_rel_auto tactic. J

In addition, the “Q has terminated at x” predicate is Diophantine for any FRACTRAN
program Q. The proof is similar to the previous one:

I Lemma 23. For any FRACTRAN program Q : L (N×N) and any f : (V→ N)→ N, there
is a map DP f → DR (λν.∀y,¬Q //F fν � y).

Proof. The map ∀f, DP f → DR (λν.∀y,¬Q //F fν � y) is built by induction on Q. If
Q = [], then we show (∀y,¬ [] //F fν � y)↔ True, and thus DR (λν.∀y,¬Q //F fν � y) by
map 4 of Lemma 4 and Proposition 3. If Q = p/q :: Q′, then we show the equivalence
∀y,¬Q //F fν � y ↔ q - (p.fν) ∧ ∀y,¬Q′ //F fν � y and we get DR (λν.∀y,¬Q //F fν � y)
by map 4 of Lemma 4, Proposition 5 and the induction hypothesis. J

We can now deduce a core result of the paper which states that FRACTRAN programs
have Diophantine termination predicates.

I Theorem 24. If Q is a FRACTRAN program and DP f then DR (λν.Q //F fν ↓).

Proof. By definition we have Q //F fν ↓ ↔ ∃x (Q //F fν �∗ x∧∀y, ¬Q //F x � y) and hence
we obtain the claim using Theorem 9 in conjunction with Lemma 22 and Lemma 23. J

We conclude with the undecidability of Hilbert’s tenth problem by a reduction chain
starting from the Halting problem for single tape Turing machines:

I Theorem 25 (Hilbert’s tenth problem). We have the following reduction chain

Halt � PCP � MM � FRACTRAN � DIO_FORM � DIO_ELEM � DIO_SINGLE � H10

and as a consequence, H10 is undecidable.

Proof. The proof combines the previous results like Theorems 20 and 24 and Corollary 16. J

8 The Davis-Putnam-Robinson-Matiyasevich Theorem

We conclude the paper with a proof of the DPRM theorem stating that recursively enu-
merable predicates are Diophantine. Here we assume that the informal notion of “recursive
enumerability” can be characterised by Minsky machines recognisability (see Section 6.1).

I Lemma 26. For FRACTRAN programs Q we have DR
(
λν.Q //F p1q

ν x0
1 . . . q

ν xn−1
n ↓

)
.

Proof. By induction on n : N, we show ∀f, DP f → DR (λν.fν = p1q
ν x0
1 . . . q

ν xn−1
n). Notice

that p1 and the qi’s are hard-coded11 in the Diophantine representation but we of course use
Theorem 6. Then we end the proof by a combination with Theorem 24. J

11Which means we do not need to encode the algorithm that actually computes them.

https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#dio_rel_fractran_step
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#dio_rel_fractran_stop
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#FRACTRAN_HALTING_on_diophantine
https://uds-psl.github.io/H10/website/Undecidability.H10.H10.html#Hilberts_Tenth
https://uds-psl.github.io/H10/website/Undecidability.H10.H10.html#H10_undec
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#FRACTRAN_HALTING_on_exp_diophantine

16 Hilbert’s Tenth Problem in Coq

I Theorem 27 (DPRM). Any MM-recognisable relation R : Nn → P is Diophantine: one
can compute a single Diophantine equation p =̇ q : Dsingle(Fm,Fn) with n parameters and m
variables s.t. ∀~v : Nn, R ~v ↔ ∃~w : Nm, JpK~w~v = JqK~w~v .12

Proof. By definition, R : Nn → P is recognised by some Minsky machine P with (n + m)
registers, i.e. R ~v ↔ (1, P) //M (1, ~v ++~0) ↓. By Theorem 20, we compute a FRACTRAN
program Q s.t. (1, P) //M (1, [v1; . . . ; vn;w1; . . . ;wm]) ↓ ↔ Q //F p1q

v1
1 . . . qvnn qw1

n+1 . . . q
wm
n+m ↓.

Hence we deduce R [v1; . . . ; vn] ↔ Q //F p1q
v1
1 . . . qvnn ↓. As a consequence, the relation

λν.R [ν x0; . . . ; ν xn−1] is Diophantine by Lemma 26. By Corollary 16, there is a Diophantine
equation p =̇ q : Dsingle(N,V) such that R [ν x0; . . . ; ν xn−1]↔ ∃ϕ, JpKϕν = JqKϕν . Notice that
the value ν xi of any parameter of p =̇ q greater than xn does not influence solvability.

Now let m be an upper bound of the number of (existentially quantified) variables in
p =̇ q. We injectively map those variables in Fm and we project the parameters of p =̇ q onto
Fn by replacing every parameter greater than xn with the 0 constant. We get a Diophantine
equation p′ =̇ q′ : Dsingle(Fm,Fn) of which the solvability at ~v is equivalent to R ~v. J

9 Related and Future Work

Regarding formalisations of Hilbert’s tenth problem, there are various unfinished and pre-
liminary results in different proof assistants: Carneiro [1] formalises Matiyasevich’s theorem
(Diophantineness of exponentiation) in Lean, but does not consider computational models or
the DPRM theorem. Pąk formalises results regarding Pell’s equation [24] and proves that
Diophantine sets are closed under union and intersection [25], both as parts of the Mizar
Mathematical Library. Stock et al. [28] report on an unfinished formalisation of the DPRM
theorem in Isabelle based on [21]. They cover some parts of the proof, but acknowledge
for important missing results like Lucas’ or “Kummer’s theorem” and a “formalisation of
a register machine.” Moreover, none of the cited reports considers the computability of
the reductions involved or the verification of a universal machine in the chosen model of
computation yet, one of them being a necessary proof goal for an actual undecidability result
in the classical meta-theories of Isabelle/HOL and Mizar.

Regarding undecidability proofs in type theory, Forster, Heiter, and Smolka [8] reduce
the halting problem of Turing machines to PCP. Forster and Larchey-Wendling [11] reduce
PCP to provability in linear logic via the halting problem of Minsky machines, which we
build on. Forster, Kirst and Smolka develop the notion of synthetic undecidability in Coq
and prove the undecidability of various notions in first-order logic [9].

In future developments, we want to connect our work to the formalisation of the recent
simplified undecidability proof for System F inhabitation by Dudenhefner and Rehof [7], which
builds on elementary Diophantine constraints. The undecidability of second-order unification
shown by Goldfarb [14] is also by reduction from elementary Diophantine constraints. We
want to formalise his proof as an addition to our library of undecidable problems.

In the present paper, we prove that every MM-recognisable problem is Diophantine. This
result can be extended to an equivalence, and furthermore to other formalised models of
computation like µ-recursive functions [17], Turing machines, or the untyped λ-calculus [12].

12 In the notation JpK~w
~v we abusively identify the vector ~v : Nn (resp. ~w : Nm) with the valuation

λ(i : Fn).~v[i] (resp. λ(j : Fm). ~w[j]) that accesses the components of the vector ~v (resp. ~w).

https://uds-psl.github.io/H10/website/Undecidability.H10.DPRM.html#DPRM_n

REFERENCES 17

References

1 Mario Carneiro. A Lean formalization of Matiyasevič’s theorem, 2018. arXiv:1802.
01795.

2 John H. Conway. FRACTRAN: A Simple Universal Programming Language for Arith-
metic, pages 4–26. Springer New York, New York, NY, 1987.

3 Martin Davis. Arithmetical problems and recursively enumerable predicates 1. The
Journal of Symbolic Logic, 18(1):33–41, 1953.

4 Martin Davis. Hilbert’s Tenth Problem is Unsolvable. The American Mathematical
Monthly, 80(3):233–269, 1973.

5 Martin Davis and Hilary Putnam. A computational proof procedure; Axioms for number
theory; Research on Hilbert’s Tenth Problem. Air Force Office of Scientific Research, Air
Research and Development, 1959.

6 Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponential
Diophantine equations. Annals of Mathematics, pages 425–436, 1961.

7 Andrej Dudenhefner and Jakob Rehof. A Simpler Undecidability Proof for System F
Inhabitation. TYPES 2018, 2018.

8 Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-Related Computa-
tional Reductions in Coq. In ITP 2018, pages 253–269. Springer, 2018.

9 Yannick Forster, Dominik Kirst, and Gert Smolka. On Synthetic Undecidability in Coq,
with an Application to the Entscheidungsproblem. In CPP 2019, pages 38–51, 2019.

10 Yannick Forster and Dominique Larchey-Wendling. Towards a library of formalised
undecidable problems in Coq: The undecidability of intuitionistic linear logic. Workshop
on Syntax and Semantics of Low-level Languages, Oxford, 2018.

11 Yannick Forster and Dominique Larchey-Wendling. Certified Undecidability of Intuition-
istic Linear Logic via Binary Stack Machines and Minsky Machines. In CPP 2019, pages
104–117. ACM, 2019.

12 Yannick Forster and Gert Smolka. Weak Call-By-Value Lambda Calculus as a Model of
Computation in Coq. In ITP 2018, pages 189–206. Springer, 2017.

13 Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

14 Warren D. Goldfarb. The undecidability of the secondorder unification problem. Theor-
etical Computer Science, 13:225–230, 1981.

15 David Hilbert. Mathematical problems. Bulletin of the American Mathematical Society,
8(10):437–479, 1902.

16 J. P. Jones and Y. V. Matijasevič. Register Machine Proof of the Theorem on Exponential
Diophantine Representation of Enumerable Sets. J. Symb. Log., 49(3):818–829, 1984.

17 Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq. In ITP 2017,
pages 371–388. Springer, 2017.

18 Edouard Lucas. Théorie des Fonctions Numériques Simplement Périodiques. [Continued].
American Journal of Mathematics, 1(3):197–240, 1878.

19 Yuri V. Matijasevič. Enumerable sets are Diophantine. In Soviet Mathematics: Doklady,
volume 11, pages 354–357, 1970.

20 Yuri V. Matiyasevich. A new technique for obtaining Diophantine representations via
elimination of bounded universal quantifiers. J. Math. Sci., 87(1):3228–3233, 1997.

21 Yuri V. Matiyasevich. On Hilbert’s Tenth Problem. Expository Lectures 1, Pacific
Institute for the Mathematical Sciences, University of Calgary, February 2000. URL: http:
//www.mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf.

http://arxiv.org/abs/1802.01795
http://arxiv.org/abs/1802.01795
http://www.mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf
http://www.mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf

18 REFERENCES

22 Yuri V. Matiyasevich. Martin Davis and Hilbert’s Tenth Problem. In Martin Davis on
Computability, Computational Logic, and Mathematical Foundations. Springer, 2016.

23 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
24 Karol Pąk. The Matiyasevich Theorem. Preliminaries. Formalized Mathematics, 25(4):315–

322, 2017.
25 Karol Pąk. Diophantine sets. Preliminaries. Formalized Mathematics, 26(1):81–90, 2018.
26 Emil L. Post. Recursively enumerable sets of positive integers and their decision problems.

bulletin of the American Mathematical Society, 50(5):284–316, 1944.
27 Julia Robinson. Existential definability in arithmetic. Transactions of the American

Mathematical Society, 72(3):437–449, 1952.
28 Benedikt Stock et al. Hilbert meets Isabelle: Formalisation of the DPRM theorem in

Isabelle. Isabelle Workshop 2018, 2018. doi:10.29007/3q4s.
29 The Coq Proof Assistant. http://coq.inria.fr, 2019.

A Some numerical Details about the Coq Code Contents

We give a detailed overview of the structure of the code corresponding to the results presented
in this paper, and which was contributed to our Coq library of undecidable problems. The
following lines of code (loc) measurements combine both definitions and proof scripts but do
not account for comments. Notice that there are more files in the whole library than those
needed to actually cover H10, but here, we only present the latter. In total, we contribute
12k loc to our undecidability project, 4k being additions to its shared libraries as extensions
of the Coq standard library.

Concerning the multi-purpose shared libraries in Shared/Libs/DLW/Utils:
we implemented finitary sums/products (over monoids) up to the binomial theorem
(Newton) over non-commutative rings in sums.v and binomial.v for a total of 550 loc;
we implemented bitwise operations over N, both a lists of bits in bool_list.v and Peano
nat in bool_nat.v for a total of 1700 loc;
we implemented many results about Euclidean division and Bézout’s identity in gcd.v,
prime numbers and their unboundedness in prime.v, and base p representations in
power_decomp.v for a total of 1200 loc;
we implemented miscellaneous libraries for the reification of bounded_quantification.v
(120 loc), the Pigeon Hole Principle in php.v (350 loc) and iterations of binary relations
in rel_iter.v (230 loc).

Concerning the libraries for Minsky machines and FRACTRAN programs:
by a slight update to the existing code [11], we proved inmm_comp.v thatMM-termination
(on any state) is undecidable (10 loc). Both the pre-existing result (undecidability of
MM-termination on the zero state) and the new result derive from the correctness of the
compiler of binary stack machines into Minsky machines;
we implemented the removal of self-loops in Minsky machines in mm_no_self.v (340 loc);
we construct two infinite sequences of primes pi and qi in prime_seq.v (240 loc);
FRACTRAN definitions and basic results occur in fractran_defs.v (310 loc) and the verified
compiler from Minsky machines to FRACTRAN occurs in mm_fractran.v (300 loc);

Concerning the libraries for proving Matiyasevich’s theorems:
we implemented a library for modular arithmetic (Z/pZ) in Zp.v (920 loc);
we implemented a library for 2 × 2-matrix computation including exponentiation and
determinants in matrix.v (210 loc);
we implemented an elementary proof of Lucas’ theorem in luca.v (290 loc);

http://dx.doi.org/10.29007/3q4s
http://coq.inria.fr
https://github.com/uds-psl/coq-library-undecidability
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/sums.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/binomial.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/bool_list.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/bool_nat.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/gcd.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/prime.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/power_decomp.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/bounded_quantification.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/php.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/rel_iter.v
https://github.com/uds-psl/H10/tree/master/ILL/Mm/mm_comp.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/mm_no_self.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/prime_seq.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/fractran_defs.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/mm_fractran.v
https://github.com/uds-psl/H10/tree/master/H10/ArithLibs/Zp.v
https://github.com/uds-psl/H10/tree/master/H10/ArithLibs/matrix.v
https://github.com/uds-psl/H10/tree/master/H10/ArithLibs/luca.v

REFERENCES 19

the solution αb(n) of Pell’s equation and its (modular) arithmetic properties up to a proof
of its Diophantineness are in alpha.v (1150 loc);
from αb(n), we implement the meta-level Diophantine encoding of the exponential in
expo_diophantine.v (150 loc);
we implement the sparse ciphers used in the Diophantine elimination of bounded universal
quantification in cipher.v (1450 loc).

Concerning the object-level Diophantine libraries:
the definition of Diophantine logic and basic results is in dio_logic.v (450 loc);
the definition of elementary Diophantine constraints and the reduction from Diophantine
logic is in dio_elem.v (580 loc);
the definition of single Diophantine equations and the reduction from elementary Dio-
phantine constraints is in dio_single.v (350 loc);
we implement the object-level Diophantine encoding of the exponential relation in
dio_expo.v (130 loc); but all the work is done in the previously mentioned libraries;
the object-level Diophantine encoding of bounded universal quantification spans over
dio_binary.v, dio_cipher.v and dio_bounded.v (430 loc);
we derive the object-level Diophantine encoding of the reflexive-transitive closure in
dio_rt_closure.v (40 loc);
we implement the object-level Diophantine encoding of the FRACTRAN termination
predicate in fractran_dio.v (110 loc).

To finish, the main undecidability results and the DPRM:
the undecidability of Minsky machines is in HALT_MM.v (20 loc);
the reduction from MM to FRACTRAN is in MM_FRACTRAN.v (50 loc);
the Diophantine encoding of FRACTRAN termination is in FRACTRAN_DIO.v (70 loc);
the whole reduction chain leading to the undecidability of H10 is in H10.v (60 loc);
and the DPRM theorem is in DPRM.v (45 loc).

B Atomic Formulæ as Elementary Constraints (Lemma 12)

We complete the postponed part of the proof of Lemma 12. We compute a representation
for an atomic logical formula p =̇ q : Dform in an interval [ua, ua+n[⊆ U.13 We describe the
technique on the example of the atomic formula x1 +̇ (x2 ×̇ 5) =̇ x3 which we represent in
the interval [u0, u10[. Let us consider the following definitions:

E :=

u0 =̇ u1 +̇ u2 ; u3 =̇ u1 +̇ u4 ; u3 =̇ u2 +̇ u9 ;
u4 =̇ u5 +̇ u6 ; u5 =̇ x1 ; u6 =̇ u7 ×̇ u8 ; u7 =̇ x2 ; u8 =̇ 5 ;
u9 =̇ x3

 r := u0

The second line of E encodes the expression x1 +̇ (x2 ×̇ 5) in [u4, u9[, and the third line
encodes the expression x3 in [u9, u10[in a directed way: the values of the ui’s are uniquely
determined by the values of the xi’s and the value of u4 (resp. u9) is always the same as
the value of x1 +̇ (x2 ×̇ 5) (resp. x3). By “directed” we mean that the encoding is oriented
bottom-up by the syntactic tree of sub-expressions: each variable in [u4, u9[(resp. [u9, u10[)
encodes a sub-expression of x1 +̇ (x2 ×̇ 5) (resp. x3) and its value is always the same as the
value of the corresponding sub-expression.

The first line encodes the identity sign in x1 +̇ (x2 ×̇ 5) =̇ x3. Indeed, whatever the values
of u4 and u9, the three constraints of the first line give enough freedom (in the choice of

13The value of a is an input but the value of n is an output.

https://github.com/uds-psl/H10/tree/master/H10/Matija/alpha.v
https://github.com/uds-psl/H10/tree/master/H10/Matija/expo_diophantine.v
https://github.com/uds-psl/H10/tree/master/H10/Matija/cipher.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_logic.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_elem.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_single.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_expo.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_binary.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_cipher.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_bounded.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_rt_closure.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/fractran_dio.v
https://github.com/uds-psl/H10/tree/master/H10/HALT_MM.v
https://github.com/uds-psl/H10/tree/master/H10/MM_FRACTRAN.v
https://github.com/uds-psl/H10/tree/master/H10/FRACTRAN_DIO.v
https://github.com/uds-psl/H10/tree/master/H10/H10.v
https://github.com/uds-psl/H10/tree/master/H10/DPRM.v

20 REFERENCES

u1, u2, u3) to always be satisfiable (requirement 3 of Definition 11). But when the single
constraint u0 =̇ 0 is added (because r is u0), then u1 and u2 must evaluate to 0 (because of
u0 =̇ u1 +̇ u2) and then u3 must have the same value as both u4 (because of u3 =̇ u1 +̇ u4)
and u9 (because of u3 =̇ u2 +̇ u9), hence the identity x1 +̇ (x2 ×̇ 5) =̇ x3 must be satisfied
(requirement 4 of Definition 11).

C Proof of a Convexity Identity (Proposition 13)

We give an elementary arithmetic justification of the result, proof which involves none of the
high-level tools of mathematical analysis. We first show the statement

for any a, b : N, we have 2ab ≤ a2 + b2 and 2ab = a2 + b2 ↔ a = b (1)

Assuming without loss of generality that a ≤ b, we can write b = a+ δ with δ ∈ N and then,
for ./ ∈ {≤,=} we have 2ab ./ a2 + b2 ↔ 2a2 + 2aδ ./ a2 + a2 + 2aδ + δ2 ↔ 0 ./ δ2 hence
the desired result.

Then we proceed with the proof of
∑n
i=1 2piqi =

∑n
i=1 p

2
i + q2

i ↔ p1 = q1 ∧ · · · ∧ pn = qn.
The if case is obvious so we only describe the only if case. If there is u ∈ [1, n] such that
pu 6= qu then we have 2puqu < p2

u + q2
u, and 2pjqj ≤ p2

j + q2
j for all the other j ∈ [1, n]− {u},

in all cases by Statement (1). Hence we get
∑n
i=1 2piqi <

∑n
i=1 p

2
i + q2

i and the identity is
not possible. So the only way to get the identity is when pu = qu holds for any i ∈ [1, n].
Despite its “classical logic” taste, this argument can easily be transformed into a constructive
one by reasoning inductively on n.

D Avoiding Overflows in the Proof of Theorem 7

The section explains why we slightly modified the original proof of the elimination of bounded
universal quantification [20] to avoid overflows when multiplying ciphers. Considering
Equation (40) of page 3232, we compute the following product of ciphers

n∑
i=1

air
2i ×

n∑
i=1

bir
2i =

n∑
i=1

aibir
2i+1

+
∑

1≤i<j≤n
(aibj + ajbi)r2i+2j

and we remark that aibj + ajbi overflows over r = 22q for e.g. ai = aj = bi = bj =
2q − 1. This slight overflow makes the implementation of the proof that the right part∑

i<j(aibj + ajbi)r2i+2j is masked out in Equation (40) significantly harder.
On the other hand, for r alternatively chosen as e.g. r = 24q, the overflow does not occur

any more. With this remark, we do not imply that Equation (40) of [20] is incorrect in any
way. However, its formal proof is really more complicated when overflows occur and that
situation is straightforward to avoid.

	Introduction
	Diophantine Relations
	Diophantine Logic
	Example of a Mechanised Diophantineness Proof
	Exponentiation and Bounded Universal Quantification
	Reflexive-Transitive Closure is Diophantine

	Elementary Diophantine Constraints
	Single Diophantine Equations
	Remarks on the Implementation of Matiyasevich's Theorems
	Exponential is Diophantine (coq:diorelexpo)
	Admissibility of Bounded Universal Quantification (coq:diorelfalllt)

	Minsky Machines Reduce to FRACTRAN
	Minsky Machines
	FRACTRAN

	Diophantine Encoding of FRACTRAN
	The Davis-Putnam-Robinson-Matiyasevich Theorem
	Related and Future Work
	Some numerical Details about the Coq Code Contents
	Atomic Formulæ as Elementary Constraints (coq:diorepratform)
	Proof of a Convexity Identity (coq:convexneq)
	Avoiding Overflows in the Proof of coq:diorelfalllt

