Labelled Cyclic Proofs for Separation Logic

Didier Galmiche and Daniel Méry
Université de Lorraine - LORIA,
Campus Scientifique BP 239, Vandœuvre-lès-Nancy, France

Abstract. Separation Logic (SL) is a logical formalism for reasoning about programs that use pointers to mutate data structures. SL has proven itself successful in the field of program verification over the past fifteen years as an assertion language to state properties about memory heaps using Hoare triples. Since the full logic is not recursively enumerable, most of the proof-systems and verification tools for SL focus on the decidable but rather restricted symbolic heaps fragment. Moreover, recent proof-systems that go beyond symbolic heaps allow either the full set of connectives, or the definition of arbitrary predicates, but not both. In this work, we present a labelled proof-system called GM\textsubscript{SL} that allows both the definition of arbitrary inductive predicates and the full set of SL connectives.

1 Introduction

Separation Logic (SL) is a logic for reasoning about programs that use pointers to manipulate and mutate (possibly shared) data structures [10,14]. It was mainly designed to be used in the field of program verification as an assertion language to state properties (invariants, pre- and post-conditions) about memory heaps using Hoare triples. Some problems about pointer management, such as aliasing, are notoriously difficult to deal with and SL has proven successful on that matter over the past fifteen years. Building upon the Logic of Bunched Implications (BI) [13], from which it borrows its spatial connectives \ast (“star”) and \rightarrow (“magic wand”), SL adds the \rightarrow predicate (“points-to”), with $x \rightarrow y$ meaning that y is the content of the memory cell located at address x. One of the most interesting feature of SL (and a significant part of its success) is its built-in ability for local reasoning, which allows program specifications to be kept tighter as they need not consider (or worry about) memory cells that are outside the scope of the program.

However, being able to specify tight and concise properties about memory heaps more easily would remain of a somewhat limited interest if such specifications could not be verified or proved. It is therefore very important to provide (preferably efficient) proof-methods and automated verification tools for SL and much effort has been put on that subject recently. However, the task is not trivial because although the quantifier-free fragment of SL is decidable, full SL is not [5,6,11]. Full SL is not even recursively enumerable, so that no proof-system for SL can be finite, sound and complete at the same time. The undedicability of
SL entails that most of the existing proof-systems and verification tools consider only restricted (but usually decidable) fragments of SL, of which the symbolic heaps fragment [2] is the most popular. Unfortunately, since the multiplicative implication \rightarrow has been left out, the symbolic heaps fragment cannot express the properties about heap extension that most of the induction hypotheses used in the literature for proving properties about pointer manipulating programs require. Even without considering such formulas, the symbolic heaps fragment cannot express many useful properties about heaps (such as cross-split or partial determinism for example) that are used is ASL to distinguish classes of models and variants of the logic.

In Section 2 we recall the basic notions about the syntax and semantics of SL and illustrate its use as an assertion language to specify properties about mutable data structures. In Section 3 we discuss our motivations and related works. In Section 4 we introduce GM$_{SL}$, our labelled proof-system which combines both Brotherston’s cyclic-proofs [4] with Hou & Gore & Tiu’s labelled proof-system LS$_{SL}$ [9]. Like LS$_{SL}$ and unlike Cyclist$_{SL}$, GM$_{SL}$ supports the full set of SL connectives. Like Cyclist$_{SL}$ and unlike LS$_{SL}$, it also allows arbitrarily defined inductive predicates.

2 Separation Logic

Separation Logic (SL) is a concrete model of the boolean variant of BI called Boolean BI (BBI) [11] in which worlds are pairs of memory heaps and stacks called states. There are many variants of SL. In this section we follow Reynolds’s original presentation of SL [14] (which was called “Pointer Logic” back then) without the machinery of pointer arithmetic.

In Reynolds’s presentation, the set of values Val is the set of integers. Val contains two disjoint subsets Loc and $Atoms$. Loc contains an infinite number of locations (addresses of memory cells), while $Atoms$ denote constants such as nil (which is always assumed to be present). Besides values, we need an infinite and countable set Var of program variables.

A stack (or store) $s : Var \rightarrow fin Val$ is a finite total function that associates values to program variables and a heap $h : Loc \rightarrow fin Val \times Val$ is a finite partial function that associates pairs of values to locations. The heap the domain of which is empty is called the empty heap and is denoted ϵ. We respectively denote Heaps and Stacks the sets of all heaps and all stacks. A state is a pair (s,h) where s is a stack and h is a heap.

We use the notation $h_1 \# h_2$ to denote that the heaps h_1 and h_2 have disjoint domains. Heap composition $h_1 \cdot h_2$ is only defined when $h_1 \# h_2$ and is then equal to the union of functions with disjoint domains. Heap composition extends to states as follows:

$$(s_1,h_1) \cdot (s_2,h_2) = (s_1,h_1 \cdot h_2) \text{ iff } s_1 = s_2 \text{ and } h_1 \# h_2.$$

1. For convenience, in this paper, we also work with heaps of the form $h : Loc \rightarrow fin Val$.

An expression \(e \) can either be a value \(v \) or a program variable \(x \) and is interpreted w.r.t. a stack \(s \) so that \([x]_s = s(x)\) and \([v]_s = v\).

The language of SL contains equality, two “points-to” predicates \(\vec{i} \rightarrow \vec{j} \) and \(\vec{z} \rightarrow \vec{j} \) (we shall often drop the superscripts to improve readability), the connectives of BI and the existential quantifier. It is defined as follows:

\[
- P ::= e \vec{i} \rightarrow e \mid e \vec{z} \rightarrow e_1, e_2 \mid e_1 = e_2 \quad \text{where \(e, e_1 \) and \(e_2 \) are expressions},
- F ::= P \mid 1 \mid F \ast F \mid F \rightarrow F \mid \top \mid \bot \mid F \land F \mid F \lor F \mid \exists u.F
\]

As usual, negation \(\neg F \) can be defined as \((F \rightarrow \bot) \). One could also define \(\top \) as \((\bot \rightarrow \bot)\) instead of having it as primitive.

The semantics of the formulas is given by a forcing relation of the form \((s, h) \models F \) that asserts that the formula \(F \) is true in the state \((s, h) \), where \(s \) is a stack and \(h \) is a heap. It is also required that the free variables of \(F \) are included in the domain of \(s \).

Definition 1. The semantics of the formulas is defined as follows:

\[
- (s, h) \models e_1 = e_2 \iff ([e_1]_s = [e_2]_s).
- (s, h) \models \vec{i} \rightarrow e_1 \iff \text{dom}(h) = \{[e]_s\} \text{ and } h([e]_s) = ([e_1]_s).
- (s, h) \models e \vec{z} \rightarrow e_1, e_2 \iff \text{dom}(h) = \{[e]_s\} \text{ and } h([e]_s) = ([e_1]_s, [e_2]_s).
- (s, h) \models \top \iff \text{always}\n- (s, h) \models \bot \iff \text{never}\n- (s, h) \models A \land B \iff (s, h) \models A \text{ and } (s, h) \models B\n- (s, h) \models A \lor B \iff (s, h) \models A \text{ or } (s, h) \models B\n- (s, h) \models A \rightarrow B \iff (s, h) \models A \text{ implies } (s, h) \models B\n- (s, h) \models \bot \iff h = \epsilon\n- (s, h) \models A \ast B \iff \exists h_1, h_2. h_1 \# h_2, h_1 \cdot h_2 = h, (s, h_1) \models A \text{ and } (s, h_2) \models B\n- (s, h) \models A \rightarrow B \iff \forall h_1. \text{ if } h_1 \# h \text{ and } (s, h_1) \models A \text{ then } (s, h \cdot h_1) \models B\n- (s, h) \models \exists u.A \iff \exists v \in \text{Val}. ([s | u \rightarrow v], h) \models A
\]

In the previous definition, the notation \([s | u \rightarrow v]\) denotes the stack \(s' \) such that \(s'(u) = v \) and \(s'(x) = s(x) \) if \(x \neq u \).

As usual, an *entailment* \(F \models G \) between formulas holds if and only if for all states \((s, h) \), if \((s, h) \models F \) then \((s, h) \models G \). The formula \(F \) is valid in SL, written \(\models F \), if and only if \(F \models F \), i.e., for all states \((s, h) \), \((s, h) \models F \). By the semantics of \(\rightarrow \), we can relate the notions of entailment and validity as follows: \(F \models G \) if and only if \(\models F \rightarrow G \).

The actual use of SL is as an assertion language to state invariants, pre- and post-condition in Hoare triples [13]. For example, one can define the command \textit{dispose}(e)\) that deallocates a location (thus creating dangling pointers) by the axiom \{ \(P \ast \exists u. e \rightarrow u \) \textit{dispose}(e) \(P \) \} where \(u \) is not free in \(e \). The ability to state low-level properties about memory states (such as \textit{dispose}) and Hoare Logic programming axioms using SL’s assertion language is already very useful, mainly because SL has built-in facilities for local reasoning that allows a program specification to do without cumbersome conditions about memory cells...
that are outside the program’s footprint [13]. However, SL only achieves its full potential w.r.t. program verification when moving to high-level properties about data structures that are mutated by pointer-manipulating programs. Most of these data structures are inductive and can be expressed using SL’s assertion language enriched with inductive predicates. For example, one can define an acyclic singly-linked list segment \(ls(e_1, e_2) \) that starts at address \(e_1 \) and ends with a memory cell containing \(e_2 \) as follows:

\[
ls(e_1, e_2) \overset{\text{def}}{=} (e_1 = e_2 \land \top) \lor (e_1 \neq e_2 \land \exists u. (e_1 \rightarrow u \ast ls(u, e_2)))
\]

Such a formula states that a memory heap corresponds to an empty list (a list with identical starting and ending points) if it is empty and corresponds to a non-empty list segment (with distinct starting and ending points \(e_1 \) and \(e_2 \)) if it can be split into two disjoints heaps, one being the first node of the list segment located at address \(e_1 \) and pointing to address \(u \), the second one corresponding to a list segment that starts at address \(u \) and ends with a memory cell containing \(e_2 \).

A fairly standard example of a high-level property about list segments is a property stating that the combination of a heap that represents a list segment \(ls(x, x') \) with a disjoint heap that represents a list segment \(ls(x', y) \) should result in a heap that represents a list segment \(ls(x, y) \). The corresponding entailment is the following:

\[
(LC) \overset{\text{def}}{=} ls(x, x') \ast ls(x', y) \models ls(x, y)
\]

However, as intuitive and reasonable as it might seem, such a property is not valid in SL when \(ls \) represents acyclic list segments. The invalidity of \((LC)\) comes from the fact that two acyclic list segments \(ls(x, x') \) and \(ls(x', y) \) can give rise to what is often called a panhandle list, i.e., a list that contains a cycle after a possibly empty acyclic initial segment. A panhandle list occurs whenever \(y \) in the second list segment points to an address occurring in the first list segment.

In order to obtain a valid high-level property about concatenation of acyclic list segments, one needs to strengthen \((LC)\) so as to prevent panhandle lists which leads to the following entailment:

\[
(ALC) \overset{\text{def}}{=} (ls(x, x') \land \neg((ls(y, y') \land \neg \top) \rightarrow \bot)) \ast ls(x', y) \models ls(x, y)
\]

The subformula \(\neg((ls(y, y') \land \neg \top) \rightarrow \bot) \) ensures that it is not impossible to extend the heap representing the first list segment \(ls(x, x') \) with a non-empty list segment starting at address \(y \), which by the semantics of \(\rightarrow \) implies that \(y \) cannot be an address occurring in \(ls(x, x') \). Let us note that the entailment would not remain valid without \(\neg \top \) enforcing the non-emptiness of \(ls(y, y') \) since the non-emptiness of \(ls(y, y') \) is what ensures that \(y \) is an (allocated) address.

Another interesting entailment using \(\rightarrow \) is the following:

\[
(ALH) \overset{\text{def}}{=} ls(x, y) \rightarrow ls(x, z) \models ls(y, z)
\]

This entailment expresses the fact that if the current heap can be extended with an acyclic list segment \(ls(x, y) \) so as to represent an acyclic list segment \(ls(x, z) \) then it currently represents an acyclic list segment \(ls(y, z) \).
3 Motivation and Related Work

Our motivation in this paper is to discuss how to obtain a proof-system for SL with both the full set of connectives and the ability to define reasonably general arbitrary inductive predicates. We do so by proposing a labelled proof-system with inductive rules sets and the notion of cyclic proofs.

A purely syntactic cyclic proof-system for boolean BI with both reasonably general predicate definitions and the full set of boolean BI connectives appears in [3]. Although [3] makes use of a list and a points-to predicate, SL is intentionally only briefly mentioned as a potential application. Classical SL is handled specifically in [4], which details a cyclic proof-system that is implemented in a tool called CyclistSL. However, the logical fragment addressed in [4] is a significant restriction of the one in [3] as additive conjunction, additive implication and multiplicative implication (magicwand) are discarded.

The first proof-system for SL supporting the full set of SL connectives was our labelled tableau system TSL [8]. TSL uses labels that represents heaps and captures the properties of the heap model inside a graphical structure called the resource graph induced by a closure operator on labels w.r.t. a labelling algebra. Provability in TSL relies on the two notions of structural and logical consistency. Structural consistency captures the various properties of the heap model and involves notions such as points-to distributions and measures of the size of (the domain of) a heap. In [9], Hou & Goré & Tiu introduce a labelled sequent cal-

\[
\begin{align*}
&\text{h}_c \triangleright \text{h}_1; \text{G}; \Gamma \vdash \Delta \quad \text{U} \\
&\text{h}_2 \text{h}_1 \triangleright \text{h}_0; \text{h}_2 \text{h}_2 \triangleright \text{h}_0; \text{h}_0; \text{h}_2 \text{h}_2 \triangleright \text{h}_1; \text{h}_2 \text{h}_4 \triangleright \text{h}_1; \text{G}; \Gamma \vdash \Delta \quad \text{A}
\end{align*}
\]

Side conditions:
Each label being substituted cannot be \(e\).
In A, the label \(h_1\) does not occur in the conclusion.
In CS, the labels \(h_2, h_0, h_7, h_4\) do not occur in the conclusion.

\[
\text{Fig. 1. Structural rules in GMSL.}
\]
culus L_{SL} with built-in proof rules for two kinds of data structures: acyclic singly-linked list segments and binary trees. Without those rules, L_{SL} can be seen as a sequent-style reformulation of T_{SL} where structural aspects (resource graphs operations and points-to distributions) are translated into explicit structural and pointer rules, with refinements to handle heap extension and values on the left-hand side of points-to predicates. One valuable contribution of [9] is an implementation of the proof-system in a tool called Separata+ with a proof-strategy which guarantees termination when restricted to the symbolic heaps fragment. However, devising built-in sets of rules to handle inductive predicates is in our opinion an approach that is bound to show scalability problems given the great variety of data structures encountered.

4 The GM$_{SL}$ Proof-System

In this section we introduce GM$_{SL}$, our labelled proof-system with arbitrarily defined inductive predicates. The core of the GM$_{SL}$ labelled proof-system consists of the structural, logical and pointer rules depicted in Figures 1, 2 and 3 and can be viewed as an extension of Hou & Goré & Tiu’s L_{SL} proof-system [9] without the rules for data structures. L_{SL} incorporates the graph relations of T_{SL} [8] directly into the sequents instead of maintaining a separate resource graph. Therefore, the sequents take the form $G; \Gamma \vdash \Delta$. The Γ part contains only labelled formula $h : A$, where h is a label representing a heap and A is a SL formula. The G part contains only ternary relations $h_1 h_2 \rightarrow h_0$ meaning that the heap h_0 can be split into two disjoint subheaps h_1 and h_2 (or conversely that combining the two heaps h_1 and h_2 yields the heap h_0).

Like L_{SL}, GM$_{SL}$ has label and expression substitutions. Label substitutions are written $[h_1/h_1', \ldots, h_n/h_n']$ meaning that h_i' gets replaced with h_i. Expression substitutions are mappings $[x_1 \mapsto e_1, \ldots, x_n \mapsto e_n]$ from program variables to expressions meaning that x_i gets replaced with e_i. The result of applying an expression substitution θ to the expression e is written $e\theta$. Equality between expressions is handled via standard syntactic unification as in logic programming. Therefore, given pairs of expressions $E = \{(e_1, e_1'), \ldots, (e_n, e_n')\}$, a unifier is an expression substitution θ such that $e_i\theta = e_i'\theta$. The most general unifier of E is defined as usual and written $mgu(E)$ when it exists. In order to simplify comparisons with L_{SL}, we consider a fragment where nil is the only constant.

The two logical rules \equiv_L and \equiv_R, as well as the structural rule IU and the two pointer rules \mapsto_{L_a} and \mapsto_{L_e} are specific to GM$_{SL}$ and do not appear in L_{SL}. The rules \equiv_L and \equiv_R capture the fact that equality does not depend on heaps. The properties of heap composition in SL (unit, associativity, exchange, disjointness, equality, partial determinism, cancellativity and cross-split) are explicitly captured into the remaining structural rules. The structural rule IU explicitly captures the fact that the empty heap is an indivisible unit for heap composition.

2 Eight rules for acyclic singly-linked list segments, six rules for binary trees.

3 Those properties are captured as a closure operator on labels in T_{SL}.
in SL. The pointer rule \(\rightarrow_{L_\alpha} \) states that there is only one way to split a heap \(h_0 \) having the address \(e_1 \) in its domain so that the first component of the splitting is the singleton heap the domain of which is \(e_1 \). The pointer rule \(\rightarrow_{L_\beta} \) is a form of cross-split that captures the fact that whenever a heap \(h_0 \) admits a first splitting \(h_0 = h_1 \cdot h_2 \) with \(h_1 \) being the singleton heap \(e_1 \mapsto e_2 \) and a second splitting \(h_0 = h_3 \cdot h_4 \) with \(h_3 \) being the singleton heap \(e_3 \mapsto e_4 \) then, provided that \(e_1 \) is not the same address as \(e_3 \), \(h_0 \) has at least the two distinct addresses \(e_1 \) and \(e_3 \) in its domain and can thus be rearranged so that \(h_0 = h_1 \cdot h_3 \cdot h_5 \) for some (possibly empty) heap \(h_5 \), from which it follows that \(h_2 = h_3 \cdot h_5 \) and \(h_4 = h_1 \cdot h_5 \).

4.1 Inductive Definitions

We now follow [3] to extend GM\(_{SL} \) with inductive definitions in the spirit of Martin-Löf productions. Our definition of SL already contains the ordinary (non-inductive) predicates \(\top, I, \bot, \mapsto \) and \(\mapsto^3 \). The interpretation of these \(n \)-any predicates as subsets of \((\text{Heaps} \times \text{Val}^n) \) are as follows: \([\bot] = \emptyset\), \([\top] = \text{Heaps}\), \([I] = \{ h \mid \text{dom}(h) = \emptyset \}\), \([\mapsto] = \{(h, v_1, v_2) \mid \text{dom}(h) = \{v_1\} \text{ and } h(v_1) = v_2\}\), \([\mapsto^3] = \{(h, v_1, v_2, v_3) \mid \text{dom}(h) = \{v_1\} \text{ and } h(v_1) = \{v_2, v_3\}\}\).

We enrich the language of SL with a (fixed) finite set of inductive predicate symbols \(P_1, \ldots, P_n \) with arities \(a_1, \ldots, a_n \). We write \(x \) as a shorthand for tuples \((x_1, \ldots, x_n)\), and denote \(\pi^n_i \) the \(i \)th projection function on \(n \)-tuples such that \(\pi^n_i(x_1, \ldots, x_n) = x_i \).

Definition 2 (Inductive definition). An inductive definition of an inductive predicate \(P \) is a set of production rules \(C_1(x_1) \Rightarrow P(x_1), \ldots, C_k(x_k) \Rightarrow P(x_k) \) where \(k \in \mathbb{N}, x_1, \ldots, x_k \) are tuples of variables of appropriate length to match the arity of \(P \) and \(C_1(x_1), \ldots, C_k(x_k) \) are inductive clauses given by the grammar \(C(x) ::= P(x) \mid \hat{F}(x) \mid C(x) \land C(x) \mid C(x) \ast C(x) \mid \hat{F}(x) \rightarrow C(x) \mid \hat{F}(x) \rightarrow C(x) \mid \forall x C(x) \) with \(\hat{F}(x) \) ranging over all formulas in which no inductive predicates occur and whose free variables are contained in \(\{x\} \).

Each production rule \(C_1(x_1) \) is read as a disjunctive clause of the definition of the inductive predicate \(P \). As in [3], the use of \(\hat{F}(x) \) on the left of implications in production rules is designed to ensure monotonicity of the inductive definitions and we suppose that we have a unique inductive definition for each inductive predicate.

An annotated production rule \(C \overset{\cdot}{\Rightarrow} P(x) \) is a production rule such that gathering all the free variables in \(C \) and in \(x \) exactly results in the tuple \(z \). The left and right part of a production rule are respectively called its **body** and its **head**. An inductive definition is said to be in **normal form** (or **normal**) whenever all its production rules share the same head and the same annotation. It is straightforward to put any inductive definition into a normal form by adding equalities and existential quantifications over the free variables of an annotated production rule that occur in its body but not in its head.
Fig. 2. Logical rules in GM\textsubscript{SL}.
Definition 3 (Unfolding rules). Let \(C_1 \xrightarrow{z} P(x), \ldots, C_k \xrightarrow{z} P(x) \) be a normal inductive definition of the inductive predicate symbol \(P \). Then each production rule gives rise to a right-unfolding rule and to one premiss of the single (multipremiss) left-unfolding rule for \(P \) (also called case-split rule):

\[
\frac{\mathcal{G}; \Gamma \vdash h : C_i \vdash \Delta}{\mathcal{G}; \Gamma \vdash h : P(x) \vdash \Delta} \quad \text{P}_{\text{H}}
\]

\[
\frac{\mathcal{G}; \Gamma \vdash h : C_i \vdash \Delta}{\mathcal{G}; \Gamma \vdash h : P(x) \vdash \Delta} \quad \text{P}_{\text{L}}
\]

Let us illustrate Definition 3 with list segments. From now on, we shall write \(\ell \) for arbitrary list segments and let \(l \)'s denote only acyclic list segments. The inductive definition for \(\ell \) goes as follows:

\[1 \Rightarrow \ell(x, x) \quad x \mapsto z \Rightarrow \ell(z, y) \quad x, y, z \Rightarrow \ell(x, y) \]
which first gets normalized to obtain:

\[
\begin{align*}
& x = y \land I \xrightarrow{\gamma_y} \lo{y} \lo{x}, y) \\
& \exists u. x \mapsto u \ast \lo{u}, y \xrightarrow{\gamma_y} \lo{u}, y)
\end{align*}
\]

For \(ls\), the inductive definition (where \(x \neq y\) is syntactic sugar for \(\neg(x = y)\)):

\[
\begin{align*}
& I \xrightarrow{\gamma_y} \lo{y}(x, x) \\
& x \neq y \land (x \mapsto z \ast \lo{z}, y) \xrightarrow{\gamma_y \gamma_z} \lo{y}(x, y)
\end{align*}
\]

gets normalized to

\[
\begin{align*}
& x = y \land I \xrightarrow{\gamma_y} \lo{y}(x, y) \\
& x \neq y \land \exists u. x \mapsto u \ast \lo{u}, y \xrightarrow{\gamma_y} \lo{u}, y)
\end{align*}
\]

Generalizing from variables to expressions and expanding additive conjunctions on the left-hand side of sequents, we obtain the unfolding rules depicted in Figure 4 for list segments.

Definition 4. For any inductive predicate symbol \(P_i\) with arity \(a_i\) defined by the production rules \(C_i(x_1) \Rightarrow P(x_1), \ldots, C_i(x_k) \Rightarrow P(x_k)\) we obtain a corresponding \(n\)-ary function \(\varphi_i : \varphi(\text{Heaps} \times \text{Val}^{a_1}) \times \ldots \times \varphi(\text{Heaps} \times \text{Val}^{a_n}) \rightarrow \varphi(\text{Heaps} \times \text{Val}^n)\) as follows:

\[
\varphi_i(X) = \bigcup_{1 \leq j \leq k} \{(h, v) \mid (s[x_j \mapsto v], h) \models [P_i] X C_j(x_j)\}
\]

where \(s\) is an arbitrary stack and \([P_i] X\) is the satisfaction relation defined exactly as in Definition 1 except that \(\models [P_i] = \models [\pi_i] X\) for each \(i \in \{1, \ldots, n\}\).
Definition 5. The definition set operator for P_1, \ldots, P_n is defined as the operator Φ_P, with domain and codomain $\varphi(\text{Heaps} \times \text{Val}^{a_1}) \times \cdots \times \varphi(\text{Heaps} \times \text{Val}^{a_n})$ such that $\Phi_P(X) = (\varphi_1(X), \ldots, \varphi_n(X))$.

It is proved in [3] that the operator generated from a set of inductive definitions by Definition 5 is monotone and therefore has a least fixed-point that can be iteratively approached by approximants. First define a chain of ordinal-indexed sets $(\Phi^\alpha_P)_{\alpha \geq 0}$ by transfinite induction: $\Phi^\alpha_P = \bigcup_{\beta<\alpha} \Phi_P(\Phi^\beta_P)$ (note that this implies $\Phi^0_P = (\emptyset, \ldots, \emptyset)$). Then for each $i \in \{1, \ldots, n\}$, the set $P^i_\alpha = \pi^i_n(\Phi^\alpha_P)$ is called the α-approximant of P_i. Finally, for each $i \in \{1, \ldots, n\}$, the standard interpretation of the inductive predicate P_i is given by $[P_i] = \bigcup_\alpha P^i_\alpha$ and the forcing relation in Definition 1 is extended with the clause

$$(s, h) \models P_i(x_1, \ldots, x_n) \text{ iff } (h, [x_1]_s, \ldots, [x_n]_s) \in [P_i]$$

4.2 Labelled Cyclic Proofs

GM_{SL} handles induction with the notion of labelled cyclic proofs. Therefore, we reuse the notions of buds, companions, pre-proofs, paths and traces used in [3,4] and adapt them in the context of a labelled proof-system.

Definition 6 (Pre-proof). Let D be a derivation in GM_{SL} for a root sequent S. Each leaf sequent B in D which is not the conclusion of an inference rule is called a bud. A pre-proof of a sequent S is a pair (D, R) where D is a derivation the root of which is S and R is a function which assigns to every bud B in D a triple (C, θ, σ) such that $C \theta \sigma \subseteq B$ (using inclusion allows us to do without weakening rules in GM_{SL}), where C, called a companion for B, is a sequent occurring before B in the branch of D containing B, θ is an expression renaming substitution and σ is a label renaming substitution.

Definition 7 (Path). A path in a pre-proof (D, R) is a sequence of labelled sequent occurrences $(G_i, \Gamma_i \vdash \Delta_i)_{i \geq 0}$ such that, for all $i \geq 0$, either $G_{i+1}, \Gamma_{i+1} \vdash \Delta_{i+1}$ is a premise of the rule instance in D with conclusion $G_i, \Gamma_i \vdash \Delta_i$, or $G_{i+1}, \Gamma_{i+1} \vdash \Delta_{i+1} = R(G_i, \Gamma_i \vdash \Delta_i)$.

Definition 8 (Trace). Let $(G_i, \Gamma_i \vdash \Delta_i)_{i \geq 0}$ be a path in a pre-proof (D, R). A trace following $(G_i, \Gamma_i \vdash \Delta_i)_{i \geq 0}$ is a sequence $(A_i)_{i \geq 0}$ such that, for all $i \geq 0$, A_i is a subformula occurrence of the form $P(x)$ of some labelled formula $h : C$ in Γ_i, and either:

1. A_{i+1} is the subformula occurrence in Γ_{i+1} corresponding to A_i in Γ_i, or
2. $(G_i, \Gamma_i \vdash \Delta_i)_{i \geq 0}$ is the conclusion of a left-unfolding rule P_1, A_i is the formula unfolded and A_{i+1} is the formula obtained by the unfolding, in which case i is said to be a progress point of the trace.

An infinitely progressing trace is a trace having infinitely many progress points. Once adapted to a labelled context, the previous notions lead to the same definition of a (labelled) cyclic proof as the one given in [3,4].
Moreover, we have $\sigma h B$ and respectively take the following forms:

Definition 9 (Cyclic proof). A pre-proof $(\mathcal{D}, \mathcal{R})$ of a sequent S is a (labelled) cyclic proof if it satisfies the following global trace condition: for every infinite path $(\mathcal{G}, \Gamma; \Delta_i)_{i \geq 0}$ in $(\mathcal{D}, \mathcal{R})$, there is an infinitely progressing trace following some tail $(\mathcal{G}, \Gamma; \Delta_i)_{i \geq n}$ of the path.

Figure 5 gives an example of a pre-proof for the (LC) entailment in GM_{SL}. The bud B and companion C of this pre-proof are indicated by the $(†)$ marks and respectively take the following forms:

$$B \overset{\text{def}}{=} h_4 h_2 \triangleright h_5; \mathcal{G}_B; h_4 : \ell(u, x'); h_2 : \ell(x, y); \Gamma_B \vdash h_5 : \ell(u, y)$$

$$C \overset{\text{def}}{=} h_1 h_2 \triangleright h_6; h_1 : \ell(x, x'); h_2 : \ell(x', y) \triangleright h_0 : \ell(x, y)$$

Moreover, we have $C \theta \sigma \subseteq B$ with $\sigma = [h_4/h_1, h_5/h_0]$ and $\theta = [x \mapsto u]$. A trace from C to B is indicated by the underlined formulas. Since C is the conclusion of an application of the ℓ_4 rule, the trace also contains a progress point from C to B, which implies that the pre-proof is actually a cyclic proof.

In a labelled proof-system where labels represent heaps, one can explicitly state size constraints about heap domains, and easily take advantage of the fact that the domain of a heap is finite. Let us consider a denumerable set $\text{SVar} = \{m_0, m_2, \ldots\}$ of size variables and a (fixed) injective function $| \cdot | : \text{Heaps} \rightarrow \text{SVar}$.

Definition 10 (Size constraints). A size constraint is an expression of the form $s \ op \ s$, where $\ op \in \{=, \neq, \leq, \geq, >\}$ and s is a (non-empty) sum over $\mathbb{N} \cup \text{SVar}$. A set M of size constraints is consistent if it has a solution, i.e., there exists a measure $\mu : \text{SVar} \rightarrow \mathbb{N}$ satisfying all the size constraints in M. Given two sets of size constraints M_1 and M_2, M_1 entails M_2, written $M_1 \models M_2$, if any solution of M_1 is also a solution of M_2.

A GM_{SL} sequent $S = \mathcal{G}; \Gamma \vdash \Delta$ induces a set $\text{Size}(S)$ defined as the smallest set of size constraints such that if $h_1 h_2 \triangleright h \in \mathcal{G}$ then $|h| = |h_2| + |h_1| \in \text{Size}(S)$, if $h : I \in \Gamma$ then $|h| = 0 \in \text{Size}(S)$, if $h : I \in \Delta$ then $|h| > 0 \in \text{Size}(S)$, and if $h : x \mapsto y \in \Gamma$ or $h : x \mapsto y, z \in \Gamma$ then $|h| = 1 \in \text{Size}(S)$.

Such size-constraints open the way for alternate global soundness criterions. For example, in the (far less general) case of pre-proofs with no overlapping cycles, one can state the following easy-to-check global soundness criterion.

Definition 11. A pre-proof $(\mathcal{D}, \mathcal{R})$ of a sequent S with no overlapping cycles is a (labelled) cyclic proof if it satisfies the following decreasing size condition: for each bud B in \mathcal{D}, the assigned companion $C = \mathcal{R}(B)$ contains at least one inductive predicate symbol P such that $\text{Size}(B) \models \{ |h_B| < |h_C| \}$, where h_B and h_C are the heaps labelling the same occurrence of P^4 in B and C respectively.

For the (LC) entailment depicted in Figure 5, where we have $C \theta \sigma \subseteq B$ with $\sigma = [h_4/h_1, h_5/h_0]$ and $\theta = [x \mapsto u]$, the pre-proof is a cyclic proof in the sense of keeping track of the various occurrences of a predicate symbol can easily be done using indexes.
Fig. 5. Cyclic proof of \((\ell(x, x') \ast \ell(x', y)) \rightarrow \ell(x, y)\) in \(\text{GM}_{\text{SL}}\).
of Definition 11 because in the bud B, $h_3h_4 > h_1$ and $h_1 : x \mapsto u$ imply that $|h_1| = |h_4| + 1$ and thus $\text{Size}(B) = \{|h_4| < |h_1|\}$ for the first occurrence of the ℓ predicate in B and C.

Another example is the following entailment which states that if a heap represents a list segment ending with y, then y is not an address occurring in the heap and cannot point anywhere (i.e., y is dangling):

$$\begin{align*}
(\text{ALE}) & \overset{\text{def}}{=} \text{ls}(x,y) \models \neg(y \mapsto z \star \top) \\
(\text{ALE}) & \text{ is valid in Reynold's semantics if and only if for all states } (s,h): \\
(s,h) & \models \text{ls}(x,y) \text{ implies } (s,h) \not\models y \mapsto z \star \top
\end{align*}$$

(\text{ALE}) is obviously not valid for arbitrary list segments since a panhandle list needs to have y pointing back somewhere in the list. However, (\text{ALE}) is valid for acyclic list segments.

A pre-proof of (\text{ALE}) in GM_{SL} is given in Figure 6. The bud B and companion C of this pre-proof are indicated by the (\uparrow) marks:

$$\begin{align*}
B & \overset{\text{def}}{=} h_1h_5 > h_4; \mathcal{G}_B; h_4 : \text{ls}(u,y); h_1 : y \mapsto z; \Gamma_B \vdash \Delta_B \\
C & \overset{\text{def}}{=} h_1h_2 > h_0; h_0 : \text{ls}(x,y); h_1 : y \mapsto z \vdash \Delta_B
\end{align*}$$

Moreover, we have $C \theta \sigma \subseteq B$ with $\sigma = [h_2/h_1, h_4/h_0]$ and $\theta = [x \mapsto u]$. This pre-proof is also a cyclic proof in the sense of Definition 11 because it contains no overlapping cycles and in the bud B, $h_3h_5 > h_2$ and $h_3 : x \mapsto u$ imply that $|h_5| < |h_2|$ and it then follows from $h_1h_2 > h_0$ and $h_1h_5 > h_4$ that $\text{Size}(B) = \{|h_4| < |h_0|\}$. It also satisfies the global trace condition of Definition 9.

![Figure 6](image-url)
Theorem 1. If there is a cyclic proof of $\vdash h_0 : F$ in GM$_{SL}$, then F is valid in SL.

Proof. (Sketch) Proving the soundness of GM$_{SL}$ requires two things: first proving the local soundness of the proof-rules and then proving the soundness of the cyclic mechanism.

A label mapping for a labelled sequent $S = G; \Gamma \vdash \Delta$ is a function ρ mapping each heap label in the sequent to an actual heap of the heap model of SL and such that $\rho(\epsilon) = \epsilon$ and for all $h_i, h_j, h_k \in G$, $\rho(h_i)\rho(h_j) = \rho(h_k)$. A realization for S is a pair (s, ρ) where s is a stack and ρ a label mapping for S such that for all $h_i : A \in \Gamma$, $(s, \rho(h_i)) \models A$ and for all $h_i : A \in \Delta$, $(s, \rho(h_i)) \not\models A$. S is realizable if there is a realization for S. Local soundness follows the standard pattern of proving that every proof-rule preserves realizability (i.e., that the realizability of the conclusion of a proof-rule entails the realizability of at least one of its premisses) and has already been proven for the most part of the proof-rules in T$_{SL}$ [8] and LS$_{SL}$ [9]. The new proof-rules of GM$_{SL}$ are easily proven along the lines of their intuitive justifications at the beginning of Section 4. The local soundness of the unfolding rules obtained by Definition 3 is an easy consequence of the production rules being read as a disjunction $\bigvee_i C_i$ of inductive clauses.

Proving that the cyclic mechanism in the sense of Definition 9 goes along the lines of the proofs given in [3,4], i.e., showing that the global trace condition induces the existence of an infinitely decreasing chain of ordinals indexing the chain of approximants underlying the least fixed point interpretation of an inductive predicate, which contradicts the well-foundedness of the ordinals.

Let us prove that the decreasing size condition given in Definition 11 is sound for pre-proofs with no overlapping cycles. Suppose otherwise, then we have a cyclic proof $P = (D, R)$ for a sequent $\vdash h_0 : F$ but F is not valid in SL. Then the root sequent S is realizable. Since local soundness implies that proof-rules preserve realizability, we would be able to construct from P an infinite path of realizable sequents. Since initial sequents (axioms) are not realizable and since P is a cyclic proof with no overlapping cycles, every infinite path necessarily contains a tail consisting of infinite repetitions of cycles involving occurrences of the same bud B and associated companion C in P. However, since P satisfies the decreasing size condition of Definition 11, for at least one occurrence of an inductive predicate P, each cyclic jump from B to C strictly decreases the size of the heap realizing that occurrence of P, which contradicts the fact that the domain of a heap should be finite.
References

