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Abstract. We present CEGAR-Tableaux, a tableaux-like method for
propositional modal logics utilising SAT-solvers, modal clause-learning
and multiple optimisations from modal and description logic tableaux
calculi. We use the standard Counter-example Guided Abstract Refine-
ment (CEGAR) strategy for SAT-solvers to mimic a tableau-like search
strategy that explores a rooted tree-model with the classical proposi-
tional logic part of each Kripke world evaluated using a SAT-solver.
Unlike modal SAT-solvers and modal resolution methods, we do not
explicitly represent the accessibility relation but track it implicitly via
recursion. By using “satisfiability under unit assumptions”, we can iter-
ate rather than “backtrack” over the satisfiable diamonds at the same
modal level (context) of the tree model with one SAT-solver. By keeping
modal contexts separate from one another, we add further refinements for
reflexivity and transitivity which manipulate modal contexts once only.
Our solver CEGARBox is, overall, the best for modal logics K, KT and
S4 over the standard benchmarks, sometimes by orders of magnitude.

1 Introduction

The TABLEAUX and DL communities have strived for thirty years to provide
practical theorem provers for non-classical logics while the SAT community has
moved from efficiently solving SAT-problems with tens of propositional vari-
ables to solving problems with hundreds of variables. The “silver bullet” was
conflict driven clause-learning [7,10]. Following Claessen and Rosén [1], Fioren-
tini et al. [3] and Goré et al. [5], we give a tableaux-like calculus containing
“modal clause learning” to handle modal satisfiability, where a main procedure
explores a rooted tree-model with worlds evaluated via an “oracle” SAT-solver.
Our implementation, CEGARBox, uses multiple optimisations and, overall, is the
best over the standard benchmarks, sometimes by orders of magnitude.

Consider monomodal logic with modal operators � and � with formulae
defined from atoms p ∈ Atm by the BNF grammar ϕ ::= ⊥ | � | p | ¬ϕ | ϕ ∧
ϕ | ϕ ∨ ϕ | �ϕ | �ϕ. Define (ϕ1 → ϕ2) := (¬ϕ1 ∨ ϕ2) and ϕ1 ↔ ϕ2 := ((ϕ1 →
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ϕ2) ∧ (ϕ2 → ϕ1)). We assume familiarity with the Kripke semantics for modal
logics in which the modal logic K, KT, K4 and S4 are respectively characterised
by all; reflexive; transitive; and reflexive-transitive frames.

We thank Steve Blackburn, Ullrich Hustadt and Daniel Le Berre.

2 Modal Clausal Tableaux

Following Goré and Nguyen [4], we define modal clausal tableaux as follows.
A literal is an atom p or its negation ¬p: we use a to f and l for literals.

We use A, B, C and D for a set of literals. We define l̄ := ¬p if l = p and
l̄ := p if l = ¬p so that ¯̄l = l. A formula is in negation normal form (NNF) if
it is implication-free and negations appear only in front of atomic formulae. A
formula ϕ can be converted into an at most polynomially longer formula nnf(ϕ)
in NNF so that ϕ is logically equivalent to nnf(ϕ). Let ϕ := nnf(¬ϕ).

A cpl-clause is a disjunction of literals. A formula (¬a ∨ �b) is a box-clause
and (¬c ∨ �d) is a dia-clause. We usually write box-clauses as a → �b and
dia-clauses as c → �d to convey that the literal b is “boxed” while the literal
d is “diamonded” and that these implications “fire” from left to right if their
antecedents are true. For any set w0 of these three types of clauses, let Ccpl(w0)
and C→�(w0) and C→�(w0) be, respectively, the set of cpl-clauses, box-clauses
and dia-clauses from w0.

A modal context is a possibly empty sequence of box-like modalities: for-
mally �0ϕ := ϕ and �i+1 := �i�ϕ. Every cpl-clause, box-clause and dia-
clause is a modal clause, and if ϕ is a modal clause then so is �iϕ, i ≥ 1.
Using “;” for set-union, a set w0 of modal clauses can be partitioned into
separate modal contexts via: w0 = �0C0(w0) ; �1C1(w0) ; · · · ; �nCn(w0)
where each set Ci contains only cpl-clauses, box-clauses and dia-clauses so
C0(w0) = Ccpl(w0) ; C→�(w0) ; C→�(w0). Letting MC := �0C1; · · · ;�k−1Ck,
we gather the non-zero modal contexts via w0 = Ccpl(w0); C→�(w0); C→�(w0);
�MC(w0).

A formula can be put into modal clausal form (or Mints [11] normal form) in
linear time and space wrt length [4]. The resulting modal clauses are K-satisfiable
iff the original formula is K-satisfiable [4].

We assume familiarity with the standard tableau calculi for modal logics K,
KT, K4 and S4 using NNF. These calculi will also work for formulae in modal
clausal form. In the modal rules, L is a finite set of literals, while X, Y , and Z
are possibly empty sets of modal clauses:

(T )
�ϕ;X

ϕ;�ϕ;X
(K)

�ϕ;�X;�Y ;L
ϕ;X

(K4)
�ϕ;�X;�Y ;L

ϕ;X;�X

Suppose we want to test the formula ϕ0 for validity. We negate it and put the
negation into nnf to obtain ϕ0 := nnf(¬ϕ0). We then put ϕ0 into modal clausal
form to obtain w0. Thus w0 is the modal clausal form of nnf(¬ϕ0). We then use
the rules shown above to try to find a closed tableau, as usual. But there is an
alternative which builds-in some aspects of modus ponens as explained next.
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Given an example root node w0 := L ; {c → �d, c1 → �d1} ; {a1 →
�bi, a2 → �b2} ; �MC(w0), where L is a set of literals and �MC(w0) is arbi-
trary, consider the (transitional-but-modus-ponens-like) KE-rule [2] instance:

(jump)
L ; c → �d ; a1 → �b1, a2 → �b2 ; �MC(w0)

d ; b1 ; MC(w0)

Proposition 1. If ({c, a1, a2} ⊆ L, then this (jump) rule instance is derivable.

Instead of a derivation of (jump), we simply show how it mimics (K) viz:

L: the set of literals as in (K)
�ϕ: a principal diamond (c → �d) ∈ C→�(w0) which fires giving �d if c ∈ L
�Y : non-principal dia-clauses {c1 → �d1} = C→�(w0) \ {c → �d}
�X: box-clauses (a1 → �b1) ⊆ C→�(w0) giving {�b1} ⊆ �X if a1 ⊆ L
�X: the non-empty modal contexts �MC(w0) ⊆ �X and
none: box-clauses a2 → �b2 which are dormant if a2 ⊆ L and have no counter-

part in the original (K) rule.

We will replace the tableaux rules for cpl with a SAT-solver (oracle) and
replace (K) with a generalised variant of (jump) called (jump)/(restart) which
uses modal clause-learning. We first explain SAT-solvers and the CEGAR pro-
cedure.

3 SAT-solvers and the CEGAR Procedure

A formula is in conjunctive normal form (CNF) if it is a conjunction of cpl-
clauses. SAT-solvers are extremely efficient algorithms for determining the sat-
isfiability of a set of formulae of classical propositional logic in CNF [16].

Incremental SAT-solvers are solvers which allow alternating between adding
a clause to the SAT-solver and testing for satisfiability. Further, modern SAT-
solvers, such as MiniSAT [14], allow testing for Satisfiability Under Unit Assump-
tions, with a set of literals A = {l1, · · · , ln} called unit assumptions. That is,
if the SAT-solver is in some state σ after loading a set S of cpl-clauses into
it, we can now query whether or not S ∪ A is classically satisfiable. Moreover,
after computing the un/satisfiability of S ∪ A, such a SAT-solver will “undo”
its actions to return to its previous state σ. Using this feature, we can use one
single SAT-solver in state σ to iteratively test the classical satisfiability of many
different extensions S ∪{A1}, S ∪{A2}, · · · , S ∪{Am} of a given S without their
interfering with one another, as long as each Ai is a set of unit assumptions.

For example, if we are given the set �B ; �d1 ; · · · ; �dm ; �C where each
B ∪ {di} is a set of unit assumptions, and C is a set of arbitrary cpl-clauses,
then we can initially load the SAT-solver with the cpl-clauses in C to put it in
some state σ and then iteratively test the un/satisfiability of each set B ; di ; C
for i = 1, · · · ,m using just one SAT-solver which reuses the state σ, rather
than using m separate SAT-solvers with states B ; di ; C. We assume that the
SAT-solver we use provides the following operations:
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addClause(s, C): adds the cpl-clause C as a constraint to the SAT-solver s.
solve(s,A): accepts a set A = {l1, · · · , lm} of unit assumptions, and tries to

find a classical valuation ϑ that satisfies the cpl-clauses added so far to s
under the unit assumptions in A. The call returns one of two answers:
(sat, ϑ): if it is possible to find such an assignment ϑ representing the literals

that are true, and so we have that A ⊂ ϑ
(unsat, A′): if it is impossible to find such an assignment with A′ ⊂ A a,

not necessarily unique, unsatisfiable core of A, which causes the classical
unsatisfiability of s ∪ A. Note that A′ itself may be classically satisfiable.
The smaller A′ is the more efficient our algorithm becomes.

We also use the following operation as a shorthand to avoid complicating
specifications with the intricacies of implementation:

sat(C, A): Creates a SAT-solver s, adds the set C of cpl-clauses to s, then returns
solve(s,A) where A is a set of unit-assumptions (literals).

We use the SAT-solver MiniSat [14], in our implementation.

3.1 Counter-Example Guided Abstraction Refinement (CEGAR)

The standard way to use a SAT-solver, besides a direct translation, is called
Counter-Example Guided Abstraction Refinement (CEGAR) which involves cre-
ating an under-abstraction ψ which is less constrained than the original formula
ϕ. We use ψ := Ccpl(ϕ) as our under-abstraction. Using a SAT-solver, we check
whether a classical valuation ϑ can be found for ψ. If not, then it is impossible
to create a Kripke model for the more constrained ϕ, and we conclude that ϕ is
modally unsatisfiable. Otherwise, we check whether the classical valuation ϑ can
be extended into a Kripke model for ϕ. If so we conclude that ϕ is modally sat-
isfiable. Else we refine the under-abstraction ψ to be closer to ϕ by learning new
cpl-clauses from the classical unsatisfiable core, and repeat the whole procedure.

Some versions of CEGAR use an over-approximation or even both, but we
elide details for brevity as the method of under-approximation is the one we use.

We now present two tableau-like rules and a rule-application search strategy
to mimic modal clausal tableaux using a CEGAR approach.

4 CEGAR Tableaux: Modal Clause-Learning via SAT

We describe tableau-like rules which mimic CEGAR. Each rule has a single par-
ent above the line and multiple children below the line with the traditional modal
(rather than description logic) tableaux reading of “if the parent is modally sat-
isfiable then so is at least one child”. To handle “satisfiability under unit assump-
tions”, let A(w0) ⊆ w0 be a set of designated literals called assumptions.

local CPL satisfiability rule:

w0 := A(w0) ; Ccpl(w0) ; C→�(w0) ; C→�(w0) ; �MC(w0)(local)
sat(Ccpl(w0),A(w0))
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where sat(Ccpl(w0),A(w0)) either returns “closed” because it finds an unsat-
isfiable core A′(w0) ⊆ A(w0) of literals or returns “open” because it finds a
classical valuation ϑ(w0) ⊇ A(w0) such that ϑ(w0) |= Ccpl(w0). We can imple-
ment sat(Ccpl(w0),A(w0)) with a SAT-solver via sat(Ccpl(w0), A(w0)).

Proposition 2. If the parent of the (local) rule is modally satisfiable at some
world w via ϑ(w) then its subset, the child, is classically satisfiable under ϑ(w).

modal (jump/restart) rule:

w0 := A(w0) ; Ccpl(w0) ; C→�(w0) ; C→�(w0) ; �MC(w0)
ϑ(w0)

w1 := d ; B ; MC(w0) w′
0 := w0 ; ϕ(w0)

where ϑ(w0) ⊇ A(w0) is a classical valuation such that ϑ(w0) |= Ccpl(w0) and
(1) there is at least one “fired” diamond (c → �d) ∈ C→�(w0) & ϑ(w0) |= c
(jump): left child w1 := d;B;MC(w0) for the fired diamond �d where the

“fired” (un)boxes are
(2) B := {b | (a → �b) ∈ C→�(w0) and ϑ(w0) |= a}
(restart): right child w′

0 := w0;ϕ(w0) if the left child w1 with A(w1) = (d ; B)
closes with an unsatisfiable core A′(w1) ⊆ (d ; B) and

Ad(w1) := {d} ∪ A′(w1) is the unsatisfiable core of w1 extended with d
CS(w0) := {e | ϑ(w0) |= e & (e → �f) ∈ C→�(w0) & f ∈ Ad(w1)}

∪ {e | ϑ(w0) |= e & (e → �f) ∈ C→�(w0) & f ∈ Ad(w1)}
= {l1, . . . , ln} ⊇ {c} are the “culprits” from w0

and ϕ(w0) := (¬l1 ∨ . . . ∨ ¬ln) is the local learned cpl-clause ϕ(w0) with
which we restart w0 as w′

0 to refine ϑ(w0) since ϑ(w0) |= c and the single
diamond �d that it fired leads to a counter example w1 w.r.t. �MC(w0).

The (local) and (jump)/(restart) rules are notionally applicable to any set w0

of modal clauses except that the (jump/restart) rule is additionally parametrised
by a classical valuation ϑ(w0): that is, they form a “producer-consumer” pair.
Thus the (local) rule searches for a classical valuation (using a SAT-solver that
returns (sat, ϑ)), effectively finding an open branch of static rule applications.
The (jump) rule then uses this valuation to mimic the (K) as follows.

Item (1) non-deterministically chooses a dia-clause c → �d from C→�(w0)
which “fires” because ϑ(w0) |= c giving us the principal formula �d of (K).

Item (2) collects each box-clause a → �b from C→�(w0) which “fires” because
ϑ(w0) |= a, and unboxes each �b producing literals B ⊆ X in the (K)-rule.

The left (jump) child w1 := d ; B ; MC(w0) mimics the conclusion of a (K)-
rule instance with a premise �d ; �B ; �MC(w0), so w1 is the set of formulae
which must be true at the R-successor of the premise w0.

Applying these two rules recursively will either close w1 or leave w1 open.
If w1 stays open then w1 is a putative R-successor in the underlying counter-

model that we are exploring so we must choose some other dia-clause which is
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fired by ϑ(w0): we must iterate over all such fired diamonds as we are looking
for a closed tableau but if all choices stay open then we have a Kripke model.

Else, if w1 closes then it will return an (there may be many) unsatisfiable
core A′(w1) ⊆ (d ; B), closing the tableau branch for �d and pinpointing the
unit assumptions from w1 which cause branch closure, effectively building in a
use-check as explained below.

In the “else” case, a traditional tableau would backtrack up to the next
highest application of the (∨)-rule. But we can be cleverer by learning a clause
as follows. We extend the unsatisfiable core A(w1)′ to Ad(w1) to ensure that
d is in Ad(w1) because �d was the principal formula of the “jump” from w0

to w1. We now find the “culprits” e ∈ ϑ(w0) by “unfiring” each e → �f and
each e → �f that caused their f to be put into the extended unsatisfiable core
Ad(w1) of the R-successor, thereby obtaining the conflict set CS(w0) (used in
the proofs) of w0. That is, we have moved from w1 back to w0.

We know there is at least one culprit in w0, namely c, but in general CS(w0) =
{l1, · · · , ln} ⊇ {c}. We therefore “switch off” at least one of these culprits by
adding the disjunction of their negations ϕ(w0) := (¬l1 ∨ · · · ∨ ¬ln) as a new
clause and restart w0 as w′

0 := w0 ; ϕ(w0). Intuitively, rather than backtracking
to the next highest disjunction, our traditional tableau procedure is effectively
re-starting the Static rules on the new incarnation w′

0 to find a “saturation”
that is guaranteed to be different from ϑ(w0). Traditional tableau would only be
guaranteed to find a different “saturation” if they included use-check or cut.

Proposition 3. If the parent w0 of the (jump/restart) rule is K-satisfiable in a
Kripke model with root valuation ϑ(w0) then so is its left (jump) child w1.

Proposition 4. If the (jump/restart) rule is applied with ϑ(w0) and the right
(restart) child w′

0 is classically satisfied by ϑ(w′
0) then ϑ(w′

0) is a different clas-
sical valuation from ϑ(w0), and all previous such restarts, as there is at least one
literal li which is true in the previous valuation but false in the new one.

Example 1. Consider the standard K axiom instance �(p → q) → (�p → �q).
We negate it and obtain the negation normal form ¬K: �(¬p ∨ q) ∧ �p ∧ �¬q.
A legitimate clausal form of ¬K for illustrative purposes is: w0 = {a1, a1 →
�b1,�(b1 → (¬p ∨ q)), a2, a2 → �p, c1, c1 → �¬q} with A(w0) = ∅ and
Ccpl(w0) = {a1, a2, c1} and C→�(w0) = {a1 → �b1, a2 → �p} and C→�(w0) =
{c1 → �¬q} and �C(w0) = {�(b1 → (¬p ∨ q))}. Our final optimised normal
forming procedure produces something smaller. Figure 1 contains the search-
space for the resulting closed tableau. If we try �(p → q) → (�p → �r)
then c1 → �¬q above becomes c1 → �¬r and the tableau will remain open
and will return a Kripke (counter-)model w0Rw1 with ϑ(w0) = {a1, a2, c1} and
ϑ(w1) = {b1, p, q,¬r} which falsifies �(p → q) → (�p → �r) at w0.

4.1 Termination, Soundness and Completeness of the Strategy

We dub our search strategy as CEGARTab (in bold font).
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w0 = A(w0) ; Ccpl(w0) ; C→ (w0) ; C→ (w0) ; MC(w0)
= ∅ ; {a1, a2, c1} ; {a1 → b1, a2 → p} ; {c1 → ¬q} ;

{ (b1 → (¬p ∨ q))}

sat(Ccpl(w0), ∅)
= sat({a1, a2, c1}, ∅) = {a1, a2, c1}

(local)

(jump/restart)

w1 =
A(w1) ; Ccpl(w1) ; C→ (w1) ; C→ (w1) ; MC(w1)

= {b1, p, ¬q} ; {b1 → (¬p ∨ q)} ; ∅ ; ∅ ; ∅

sat({b1 → (¬p ∨ q), ¬q}, {b1, p, ¬q})
= Unsat({b1, p, ¬q})

(local)

(jump)

w0 = w0 ;
¬a1 ∨ ¬a2 ∨ ¬c1

Unsat({})

(local)

(restart)

ϑ(w0) = {a1, a2, c1}

Fig. 1. The search-space for the negation ¬K of the K axiom �(p → q) → (�p → �q)
where dotted lines indicate rule choices and solid lines indicate branching rules.

Each iteration in CEGARTab is finite because each node contains a finite
number of dia-clauses. Thus the only way to not terminate is for CEGARTab to
recurse for ever. But each recursion via the (jump) rule reduces the maximal
modal degree of the formula set in the child node and each recursion via the
(restart) rule enumerates a different classical valuation from the finite set of
classical valuations for Ccpl(w0). Thus CEGARTab must terminate.

Theorem 1. For all sets of modal clauses w0 := nnf(¬ϕ0), CEGARTab(w0)
returns closed iff w0 is K-unsatisfiable (and hence ϕ0 is K-valid).

Proof. Both proofs proceed by a simple induction on the number of restarts.

Soundness: If the (local) rule returns closed then w0 contains a classically unsat-
isfiable, and hence K-unsatisfiable, subset. Else there is a closed application
of the (jump)/(restart) rule with learned clause ϕ = (¬l1 ∨ · · · ∨ ¬ln). The
induction hypothesis on the closed (jump) child implies that w0 ∪ ¬ϕ is K-
unsatisfiable. The induction hypothesis on the closed (restart) child implies
that w0 ∪ϕ is K-unsatisfiable. Hence w0 is K-unsatisfiable (and cut is admis-
sible!).

Completeness: The open (local) rule returns ϑ(w0). If the (jump)/(restart) rule
is not applicable then there are no fired diamonds, and so the Kripke model
is just a dead-end w0 with ϑ(w0). Else if the (jump) child is open then
the induction hypothesis implies that we can extend ϑ(w0) into Kripke sub-
models for every diamond jump. Adding a new root with ϑ(w0) that sees all
these sub-models gives a Kripke model for w0 itself. Else if the (jump) child
is closed then the (restart) child with learned clause ϕ = (¬l1 ∨ · · · ∨ ¬ln)
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is open. Then the induction hypothesis implies that w0;ϕ is K-satisfiable,
which implies that w0 is K-satisfiable. ��

5 Implementation: Our Modal Satisfiability Tester
CEGARBox

The only data-structures our base algorithm uses are a trie and lists. Memoisa-
tion, outlined in Sect. 7.2, was implemented using a binary tree.

5.1 Initialising a Trie During Normal Forming

Normal forming creates new atomic “names” pψ for certain subformulae ψ of
the original formula: for example ��(p1 ∧ p2) becomes a1 ; a1 → �b2 ; �(b2 →
�d3) ; ��(d3 → p1) ; ��(d3 → p2) [4] where a1 names ��(p1 ∧ p2) and d3
names (p1 ∧ p2). We make a linear recursive descent of the formula and store
modal clauses in a trie where each trie-node represents a modal context. If we
stored modal contexts, our normal form would be quadratic in size, and thus
our algorithm would have a quadratic time and space complexity, as does the
one from Goré and Nguyen [4]. Below is a trie that stores the above clauses:

a1 ; a1 → �b2 b2 → �d3 d3 → p1 ; d3 → p2
��

Each node of the trie at a given level (context) has the following components:

sat: A SAT-Solver initialised with the purely classical clauses Ccpl(.) in the node
BoxCl: the box clauses C→�(.) of the form a → �b in the node
DiaCl: the dia-clauses C→�(.) of the form c → �d in the node
Child(1): the node’s (only) child node “containing” MC(.) as explained next.

Proposition 5. If the input set of modal clauses is the set w0 := Ccpl(w0) ;
C→�(w0) ; C→�(w0); �1C1 ; . . . ; �kCk then the trie has depth equal to the
maximal modal depth k of w0 and ∀i ≥ 0, Trie.node at depth i contains Ci :=
Ccpl

i ; C→�
i ; C→�

i with Trie.node.sat = Ccpl
i and Trie.node.BoxCl = C→�

i

and Trie.node.DiaCl = C→�
i and Trie.node.Child(1) = Ci+1 : as below.

Logic Trie Depth Intuition where TrieNode(i) is i-th node of Trie

0 1 · · · k k is the maximum modal depth of the given w0

K C0 C1 · · · Ck finite chain with TrieNode(k).child(1) = nil
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Algorithm 1 CEGARBox(A, TrieNode)
1: {Inputs: A is a set of unit assumptions and TrieNode is at level i in our trie}
2: Let t0 := solve(TrieNode.sat, A) {apply the (local) rule}
3: if t0 = (unsat, A ) then
4: return Unsatisfiable(A )
5: else if t0 = (sat, ϑ) then
6: {Check box- and dia-clauses that fire under classical valuation ϑ}
7: for every (c → d) ∈ TrieNode.DiaCl with c ∈ ϑ do
8: Let B = {b | (a → b) ∈ TrieNode.BoxCl and a ∈ ϑ}
9: {apply the (jump) rule at next modal context}
10: if CEGARBox((d ; B), TrieNode.child(1)) = Unsatisfiable(X’) then
11: Let C = {c} ∪ {a | (a → b) ∈ TrieNode.BoxCl and a ∈ ϑ and b ∈ X }
12: { Learn new clause ϕ := ¬C}
13: Let ϕ := l∈C ¬l
14: addClause(TrieNode.sat, ϕ) {modify the i-th context globally}
15: { apply (restart) }
16: return CEGARBox(A, TrieNode)
17: end if
18: end for
19: return Satisfiable {because every fired diamond is fulfilled}
20: end if

Fig. 2. The main algorithm of CEGARBox with A a set of unit assumptions

5.2 The Main Algorithm

Our algorithm follows Fiorentini et al.’s reworking [3] of intuit for propositional
intuitionistic logic of Claessen and Rosén [1], which itself was “inspired” by
bddtab of Goré et al. [5]. The pseudocode is in Fig. 2. Our implementation does
not return an actual Kripke model, nor a closed tableau, as such, but it is trivial
to extend it with the bookkeeping required to do so.

5.3 Inputs and Outputs

We write node.child(i) for the child labelled i of the trie rooted at node: as our
logic is monomodal, i = 1. Similar to SAT-solvers we allow the use of a set of unit
assumptions A. Our algorithm either returns Satisfiable, or Unsatisfiable(A′),
where A′ ⊂ A is an unsatisfiable core of A.

We call CEGARBox(A, Trie) as the initial call with A = ∅.
Note that line 11 computes the correct conflict set as per the (jump)/(restart)

rule because we ensure that no two box-clauses have the same RHS and no two
dia-clauses have the same RHS, as explained later.

5.4 Use of Satisfiability Under Unit Assumptions

Note that in Line 10 of Fig. 2, we call the main algorithm recursively on
Trie.child(1) with a set X = (d ; B) of unit assumptions dependent
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Logic Trie Depth Intuition where TrieNode(i) is i-th node of Trie
0 1 · · · k k is the maximum modal depth of the given w0

K C0 C1 · · · Ck finite chain with TrieNode(k).child(1) = nil

KT C0 Ck
1 · · · Ck

k descending chain with TrieNode(k).child(1) = nil

K4 C0 C1
1 · · · Ck

1 ascending chain with TrieNode(k).child(1) = TrieNode(k)

S4 C0;Ck
1 Ck

1 · · · Ck
1 fixpoint at depth 1 with TrieNode(1).child(1) = TrieNode(1)

Fig. 3. The structure of the Trie for different logics with a modal context �0C0 ;
�1C1 ; · · · ; �nCn and Cn

i := Ci ; · · · ; Cn. For K, the modalised contexts form a
descending chain Ck

1 ⊇ Ck
2 ⊇ · · · ⊇ Ck

k while for K4 (not implemented) they form an
ascending chain C1

1 ⊆ C2
1 ⊆ · · · ⊆ Ck

1 . For S4, they are the constant Ck
1 after depth 1.

upon the fired dia-clause c → �d. Moreover, this call is inside a for-loop
which iterates over the fired diamonds. That is, if the set of fired diamonds
is {c1 → �d1, · · · , cn → �dn}, and the set of fired boxes gives B = {b | (a →
�b ∈ Trie.BoxCl and a ∈ ϑ} then the putative n successor worlds must contain
the unit assumption sets X1 = (d1 ; B) and X2 = (d2 ; B) up to Xn = (dn ; B).
We iteratively test the classical satisfiability of each set Xi ; Trie.child(1) by
putting X = (bi ; B) while keeping the parameter Trie.child(1) constant. This
is sound because the sat-solver Trie.child(1).sat in Trie.child(1) undoes
the assumptions it makes while computing the classical satisfiability of one set
d1 ; B ; Trie.child(1) (say) so that the same sat-solver Trie.child(1).sat
can be reused for the next set d2 ; B ; Trie.child(1) (say) without their
interfering with each other. That is, this is only sound because our SAT-solver
provides the ability to test for “satisfiability under unit assumptions”.

5.5 Modal Clause Learning Modifies the Modal Context at Level i

Note that we learn a new cpl-clause in Line 14 via addClause(Trie.sat, ϕ).
Consider a set of formulae and suppose that we saturate it using the tradi-

tional static tableau rules for cpl giving two OR-leaves, �ϕ1 ; �X1 ; �Y1 ; L1

and �ϕ2 ; �X2 ; �Y2 ; L2 where each Li is a set of literals. Thus we can treat
L1/L2 as a classical valuation ϑ1/ϑ2 which assigns all members of L1/L2 to true.

Suppose we try the successor ϕ1 ; X1 and find that it is modally unsatisfiable.
Putting X̂1 for the conjunction of the members of X1, we know that X̂1 → ¬ϕ1 is
K-valid, independently of ϑ1 itself. By necessition, we know that �(X̂1 → ¬ϕ1)
is K-valid. Goré et al. [5] tried to implement this insight into bddtab but it was
refined nicely into the current form by Claessen and Rosén [1].

As explained previously, the i-th level of our Trie stores the cpl-clauses Ccpl
i

from the i-th modal context �iCi inside the sat-solver Trie.sat at level i. Thus
addClause(Trie.sat, ϕ) modifies the i-th modal context across level i.

We now describe extensions to handle the modal logics KT and S4.
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6 Extensions to KT and S4

Three aspects of our framework handle modalities: the modal contexts �MC =
�1C1;�2C2; · · · ;�kCk with Ci stored in the i-th level of the Trie; fired box-clauses
a → �b when ϑ |= a; and fired dia-clauses c → �d when ϑ |= c.

Capturing Reflexivity. The characteristic axioms for reflexivity are �ϕ → ϕ and
its dual ϕ → �ϕ so we make the following modification in these three aspects:

modal contexts: starting from level k, for all Trie nodes at levels i ≥ 1, add
TrieNode.child(1) to TrieNode so that the contexts in the Trie form a
descending chain, building �iCi → Ci globally into the Trie, see Fig. 3

fired box-clauses: for every context Ci of modal clauses, if (a → �b) ∈ Ci, add
the cpl-clause (a → b) to Ci, building in the T-axiom �b → b

fired dia-clauses: when calculating “fired” diamonds via “(c → �d) ∈
Trie.DiaCl with c ∈ ϑ”, add the extra condition “and d /∈ ϑ”. Thus,
(c → �d) ∈ Ccpl(w0) fires only if ϑ(w0) �|= d since w0 is its own successor.

Termination is as before for K. Soundness is obvious. For completeness, take
the reflexive closure of the tree-model created by our procedure. Why can the
deepest world be made reflexive when TrieNode(k) is not its own child? It
contains no box-clauses that fire so �ϕ → ϕ holds there vacuously.

Capturing Transitivity. Traditional proof-search in K4 can loop: e.g., the node
{��p,�p} usually creates an infinite sequence of (K4)-successors each contain-
ing the set {p,��p,�p}, leading to an infinite branch unless we check for ances-
tor loops. Thus the modal satisfiability of a given world depends not only on
its assumptions but also on its ancestors because a world w might be modally
satisfied only because some descendent v of w loops back to one of w’s ancestors.

The characteristic axiom �ϕ → ��ϕ for transitivity implies that �ϕ → �iϕ
for all i ≥ 1. So the modal contexts form an ascending chain: see Fig. 3.

modal contexts: In the K4 Trie, the k-th level is its own child and level i contains
Cn
1 := C1 ; · · · ; Cn building in �ϕ → ��ϕ;

fired box-clauses: In the i-th node of Trie, replace every box-clause a → �b
with a → �Pb, and add the modal clauses Pb → �Pb and Pb → b to every
node of the Trie from i + 1 to k where Pb is a new propositional variable
for “persistent b”, thereby encoding a finite state automaton that effectively
turns a → �b into a → �j≥ib, a technique from description logic tableaux;

ancestor loop-check: We add an additional input to CEGARBox, which is a list of
the classical valuations found for the ancestors of the current world w0. If w0

requires us to fulfil �d ; �B, where A = (d ; B) and some ancestor wa, has
ϑ(wa) |= A, then we can return satisfiable because we can just put w0Rwa.

Termination follows via ancestor loop-check. Soundness follows by noting
that the above transformations are all sound. For completeness, we just take the
transitive closure of our Kripke model.
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Capturing Reflexivity and Transitivity Together. We add the changes for both
KT and K4 as outlined above. The axiom �ϕ → ϕ made our Trie into a descend-
ing chain while the axiom �ϕ → ��ϕ made our Trie into an ascending chain,
so adding both means that our Trie contains only two levels 0 and 1 with the
second level being a fixed point. That is, level 1 is its own child with level 0
containing C0 ; Cn

1 and level 1 containing Cn
1 : see Fig. 3.

Termination is by ancestor loop-check. Soundness follows by seeing that we
are effectively encoding both of the (KT) and (K4) rules. For completeness, we
just take the reflexive and transitive closure of our underlying Kripke model.

7 Optimisations Which Made CEGARBox faster

We utilise standard simplification techniques, truth propagation, formula sort-
ing for the renaming process, and box lifting as described by Sebastiani and
Vescovi [15]. We also used techniques from Nalon et al. [12] when normal form-
ing to avoid new literals when old ones suffice. For modal logic K, this was
implemented by keeping a map in every modal context that associates the lit-
eral l with the formula ϕ it names. Then when renaming any occurrence of ϕ,
we check the map, and find l. For reflexivity, we can instead use a global map.

For brevity, we skip many small optimisations which allow us to avoid new
literals, as each such literal potentially doubles the number of classical valuations
the SAT-solvers need to search.

The running time of our algorithm depends on the number of box- and dia-
clauses, so our final processing stage involves replacing these with cpl-clauses.
Intuitively, the SAT-solver is better at handling cpl-clauses than CEGARBox is at
handling modal clauses. We therefore do the following:

1. If two box-clauses {a1 → �b, a2 → �b} or dia-clauses {a1 → �b, a2 → �b},
share a RHS b, create a new atomic formula pa and replace them with {pa →
�b/�b, a1 → pa, a2 → pa} so that no two RHSs are the same.

2. If two box clauses {a → �b, a → �c} share a LHS a, create a new literal pa

and replace these modal clauses with a → �pa, �(pa → b), and �(pa → c),
thereby moving information from the box-clauses into the modal context;

We use negative polarity for all literals in MiniSAT so it sets unknown vari-
ables to false, thus decreasing the number of box- and dia-clauses that fire.

7.1 Reducing the Number of Dia-Clauses

We make minor changes to the algorithm of CEGARBox from Fig. 2. First, the
previous optimisations mean that no two triggered dia-clauses have the same
RHS, however, a triggered box a → �r and a triggered diamond clause c → �r
may share the subformula r. Then, we can typically reduce the number of dia-
clauses we have to consider. Let B and D be the set of RHSs of triggered box
and dia-clauses, respectively. Instead of checking B ; d for every d ∈ D, we can
skip those with d ∈ B, as any world created by another triggered diamond clause
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will contain d. For the case D \ B = ∅ with D �= ∅, we just check one diamond
clause, as this one world (if created) will contain D.

If a conflict set X ′ for some fired diamond contains literals only from box-
clauses, we know the box-clauses have no consistent successor, so we can learn
the appropriate clauses for all (fired and unfired) dia-clauses in one hit.

Finally, note that we can learn a new clause only when we find an unful-
fillable dia-clause. We experimented with a heuristic to remember unfulfillable
dia-clauses by tracking how many times a given dia-clause lead to Unsatisfiable,
and sorted them highest to lowest. In general this lead to improvements, but for
some benchmarks the overhead of sorting lead to a slower time. So we experi-
mented with a quicker approximation which instead just moves a clause to the
front of the list when it leads to Unsatisfiable, which also lead to performance
improvements. However, placing the failed dia-clauses at the end also lead to
performance improvements, and requires further investigation.

7.2 Memoisation of Satisfiable Assumptions

Memoisation of Satisfiable Assumptions in K. We can store which assumptions
have lead to Satisfiable wrt each particular modal context. During proof search,
if we find that the current unit assumptions have been found to be satisfiable in
the given modal context, we can immediately return Satisfiable, saving time.

We call this exact-cache, as we only return Satisfiable if we find that the exact
same assumptions have lead to Satisfiable before. Assumptions were stored in
a Binary Tree based implementation of a set. We experimented with a “subset
cache” approach which returns Satisfiable if the current assumptions is a subset
of any cached assumptions. To get more matches, once we find that some unit
assumptions leads to satisfiable we would store not the unit assumptions but
rather the whole classical valuation instead. While this gave more matches, it was
implemented with the slow process of checking each set in the cache individually,
which made it slower than exact-cache. A faster way of implementing a subset
check over a collection of sets may make “subset cache” more feasible.

Memoisation of Satisfiable Assumptions in KT. Descending chains mean that
an assumptions set A that leads to Satisfiable in the modal context �i will also
lead to Satisfiable in the modal context �i+1. Thus we can use a global cache,
instead of a cache for each modal context, and store the assumptions A as well
as the smallest i for which it returns Satisfiable at modal context �i. Then when
searching the assumptions in the modal context �j≥i we immediately return
Satisfiable if the assumptions occurs in the cache.

Conversely, any clause learnt in the modal context �i applies to the modal
context �i−1 since context �i is a subset of context �i−1: not implemented yet.

Loop-Check and Memoisation of Satisfiability in S4. Recall that traditional
proof-search in S4 require a loop-check for termination.

Caching not just the assumptions of a world but also its ancestors would
work, however it is unlikely matches would ever occur, leading to a limited
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speed up. Instead we take a different approach, that allows us to avoid storing
any information related to ancestors in the cache. The idea is to store worlds
only if every world reachable from it is modally satisfiable. That is, if a world
w1 has been deemed to be modally satisfiable, but uses a back edge to w0, we
will only add w1 to the cache once w0 has been shown to be modally satisfiable.

So we modify the proof search to look for maximally isolated subgraphs: that
is, submodels with a world that reaches only its descendants. Formally, a world
w such that there is no back edge connecting a descendent of w to an ancestor
of w. When w becomes satisfiable, we add all its descendants to the cache.

7.3 Two Phase Caching

One problem with the previous approach is that in the worst case the highest
world reachable by a world might be so high (e.g. the root), that the procedure
never caches any worlds leading to no speed improvements.

Suppose world y is satisfiable if an ancestor world x is satisfiable. Previously,
we only cache y if and when x becomes satisfiable but we can actually treat y as
cached satisfiable for all descendants of x. Such two-phase caching means y is in
a temporary cache until x becomes satisfiable, when it moves to a global cache.

Caution: we have to check for self contained models inside bigger ones.

8 Benchmarks and Issues with MOSAIC

We now outline various issues we found during our experiments. Our benchmarks
are from Nalon et al. [12] and (corrected) Lagniez et al. [9]:

LWB: extended LWB benchmarks created by Nalon et al. [12] but which need
to be generated in situ from their instructions as they can take up 14 GB;

3CNF: 1000 randomly generated 3CNFK formulae over 3 to 10 propositional
variables with modal depth 1 or 2 with 457 satisfiable and 464 unsatisfiable;

MQBF: the complete set of TANCS-2000 modalised random QBF formulae and
the MQBF formulae provided by Kaminski and Tebbi.

KT and S4: the corrected extended benchmarks from MOSAIC.

The “new kid on the block” is MOSAIC, by Lagniez et al. [9]. But some of
their extended LWB benchmark files were blank, unreadable, or lead to incorrect
answers. We have confirmed these with Daniel Le Berre.

Daniel Le Berre sent us an executable binary for the latest version MOSAIC
2.4. Unfortunately, MOSAIC 2.4 returned wrong answers for many (corrected)
benchmarks. Daniel Le Berre has retrospectively confirmed that MOSAIC 2.0 was
also unsound. These issues undermine all of their experimental results [9].

We re-implemented the extended benchmark generator in python and con-
firmed that there were no differences with the original, smaller benchmarks.
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9 Experimental Results

We used the following options: InKreSAT 1.0 - default; FaCT++ 1.6.3 - default;
Spartacus 1.1.3 - default; BDDTab 1.0 - default; KSP 0.1.3 - ordered; and Vam-
pire 4.5.1 (OFT) (optimised functional translation) provided by Ullrich Hustadt.
Our virtual machine had an Intel Xeon E5-2640@2.40 GHz CPU and 8GB of
RAM. We also checked that all provers gave the same answers.

On the MQBF benchmarks, ksp is best, with CEGARBox second (Fig. 4). On
the extended K-LWB benchmarks, CEGARBox is best (Fig. 4) with all 56 problems
solved in the classes d4 n, d4 p, dum n, dum p, lin n, path n, path p, poly n, and
poly p within 15 s even though “only the best current provers, if any at all, will be
able to solve all the formulae within a time limit of 1000 CPU seconds” [12]. No
other prover managed to solve all 56 problems in any class. In 3CNF, CEGARBox
triumphs after 1 s (Fig. 4). Over all K-benchmarks, CEGARBox at rougly 0.7 s
beats every other prover at 15 s (Fig. 4). Indeed over all K-benchmarks, CEGARBox
solves almost 2500 problems in just 15 s while Nalon et al. [13] report that no
other prover solved more than about 2400 problems with 1000 s (16GB). For
KT, CEGARBox dominates after 1 s (Fig. 5). For S4, CEGARBox is by far the best
prover, beating every other prover within 0.25 s and solving over 600 problems
in 15 s while the best other prover, bddtab, solves only 350 (Fig. 5).

10 Related Work

All SAT-based provers except bddtab, intuit and CEGARBox use explicit names
for the reachability relation R: for example, a clause rij → · · · encodes that “if
world j is a successor of world i then ...”. Instead, we put all formulae into their
context while initialising the trie. Via the propositions about modal contexts,
we can also move all formulae from modal contexts i to j directly. We believe
that this is the reason for the massive improvement seen in our experiments.

As already stated, our approach is based on one from Claessen and Rosén [1],
which itself was “inspired” by that of Goré et al. [5], so we articulate the dif-
ferences. First, intuit handles propositional intuitionistic logic (Int), which is
characterised by finite, rooted, reflexive and transitive Kripke models without
any proper clusters, but as shown by Fiorentini et al. [3], intuit implements
the loop-free sequent calculus g4ip so termination is not an issue. Second, the
persistence property of Kripke models for Int allows them to propagate all for-
mulae “along” the reachability relation using one incremental SAT-solver, while
we must discard non-boxed formulae. Third, Claessen and Rosén outline “fur-
ther work” for classical modal logics using only one SAT-solver, using a similar
normal form, only one outermost �-context and a similar algorithm to ours, but
we cannot find anything published about this work. They also do not mention
reflexivity, transitivity, caching, loop-checking or optimisations. Thus our work
is not “just an implementation of Claessen and Rosén”.

InKreSAT [8] interleaves encoding phases with calls to an incremental SAT
solver, but uses a labelled tableau calculus, and keeps an explicit encoding of R.
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Fig. 4. Experimental results for the (extended) K benchmarks
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Fig. 5. Experimental results for the extended and corrected KT and S4 benchmarks

11 Further Work and Conclusions

Better heuristics for clause ordering will allow for both Sat and Unsat shortcuts.
For example, we found it is possible to solve all instances of branch p with one
clause learnt per modal context but our final prover does not use this ordering.

Our K prover can be extended trivially to multi-modal logics, however for
reflexive relations, the number of modal contexts a clause can belong to increases
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drastically, which most likely would slow down our prover as the number of
different modalities increases. By ensuring that each subformula ψ is named
uniquely with pψ, we can avoid keeping contexts and put pψ → ψ “globally”. It is
also easy to extend our prover to handle local and global assumptions. Symmetric
relations require the notion of “too small” from Goré and Widmann [6].

Overall, CEGARBox is arguably the best prover for K, KT, and S4 on the
standard benchmarks, sometimes by orders of magnitude.

Our repository is here: https://github.com/cormackikkert/CEGARBox.
Clearly, efficient SAT-based CEGAR-tableaux are possible for many different

non-classical logics, including intuitionistic and modal (description) logics!
Finally, there is a very close connection between CEGAR-tableaux and the

KE-tableaux of D’Agostino and Mondadori [2] which we are currently investi-
gating. In particular, note that our proofs utilise a meta-level semantic cut-rule
rather than a syntactic cut-rule: that is we have identified and absorbed all
syntactic cuts required by KE-tableaux into the (jump)/(restart) rule!
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