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Abstract
We give a constructive account of Kripke–Curry’s method which was used to establish the
decidability of implicational relevance logic (R→). To sustain our approach, we mecha-
nize this method in axiom-free Coq, abstracting away from the specific features of R→ to
keep only the essential ingredients of the technique. In particular we show how to replace
Kripke/Dickson’s lemma by a constructive form of Ramsey’s theorem based on the notion of
almost full relation. We also explain how to replace König’s lemma with an inductive form
of Brouwer’s Fan theorem. We instantiate our abstract proof to get a constructive decision
procedure for R→ and discuss potential applications to other logical decidability problems.

Keywords Constructive decidability · Relevance logic · Sequent calculi · Contraction rule ·
Redundancy-free search · Almost full relations · Mechanization in Coq

Mathematics Subject Classification 03F03 · 03B35 · 03B47

1 Introduction

In this paper, we give a fully constructive/inductive account of Kripke’s decidability proof of
implicational relevance logic R→, fulfilling the program outlined by Riche [17]. The result
is known as Kripke’s but it crucially relies on Curry’s lemma [18] which states that if a
sequent S2 is redundant over a sequent S1 and S2 has a proof, then S1 has a shorter proof. Our
account of Kripke–Curry’s method is backed by an axiom-freemechanized proof of the result
in the Coq proof assistant.1 However, their method and our constructivized implementation
is in no way limited to that particular logic. As explained in [19], “Kripke’s procedure for
deciding R→ can be seen as a precursor for many later algorithms that rely on the existence
of a well quasi ordering (WQO).” From a logical perspective, Kripke–Curry’s method has
been adapted to implicational ticket entailment [2] and the multiplicative and exponential

1 https://coq.inria.fr.
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fragment of linear logic [1]. However, both of these recent papers are now contested inside
the community because of flaws in the arguments; see [9, footnote 1], [20, footnote 4], [6,
pp 360-362] and [22]. This illustrates that the beauty of Kripke–Curry’s method should not
hide its subtlety and justifies all the more the need to machine-check such proofs.

From a complexity perspective, Schmitz [19] recently gave a 2- ExpTime complexity
characterization of the entailment problem forR→, implying a decision procedure. However,
both theoretically and practically, the existence of a complexity characterization does not
automatically imply a constructive proof of decidability. Indeed, the decision procedure itself
or its termination proof might involve non-constructive arguments. In the case of R→, the
result of [19] “relies crucially” on the 2- ExpTime-completeness of the coverability problem
in branching vector addition systems (BVASS) [7]. Checking the constructive acceptability of
such chains of results implies checking that property for every link in the chain, an intimidating
task, all the more problematic when considering mechanization.2

Our interest in the entailment problem forR→ lies in the inherent simplicity and generality
of Kripke–Curry’s argumentation. It is centered around the notion of redundancy avoidance.
But compared to e.g. intuitionistic logic (IL), the case ofR→ is specific because redundancies
are not limited to repetitions: the redundancy relation is not the identity. The case of repetition
is not so interesting: Curry’s lemma is trivial for repetition; and the sub-formula property and
the pigeon hole principle ensure that Gentzen’s system LJ has a finite search space.

In the case of R→, the sequent S2 is redundant over S1 if they are cognate3 and S1 is
included into S2 for multiset inclusion [18]. In [17], Dickson’s lemma is identified as the
main difficulty for transforming Kripke–Curry’s method into a constructive proof. Dickson’s
lemma4 is a consequence of Ramsey’s theorem which, stated positively, can be viewed as the
following result [24]: the intersection of two WQOs is a WQO. The closure of the class of
WQOs under direct products follows trivially and so does Dickson’s lemma. We think that
the use of König’s lemma in Kripke’s proof is also a potential difficulty w.r.t. constructivity.
Admittedly, there are many variants of this lemma and indeed, we will use one which is well
suited in a constructive argumentation.

Let us now present the content of this paper. In Sect. 2, we propose an overview of Kripke–
Curry’s argumentation focusing on the two issues of Dickson’s lemma and König’s lemma.
To constructivize that proof, we approached the problem posed by Dickson’s lemma by using
Coquand’s [3] direct intuitionistic proof of Ramsey’s theorem through an intuitionistic for-
mulation of WQOs as almost full relations (AF) [25]. Starting in Sect. 3, we switch to the
language of inductive type theory. We recall some basic notions and notations, introduce
formal (finite and indexed) trees and their branches, informative finiteness predicates, and
then the AF and bar inductive predicates which we prove equivalent. We recall the construc-
tive Ramsey’s and Fan theorems and we conclude with a constructive version of König’s
lemma tailored for AF (redundancy) relations. We explain how to use it for constructive and
terminating search in a finitely branching and irredundant search space.

In Sect. 4, we give a detailed formal account of what could be called the central ingredients
of Kripke–Curry’s proof by outlining the essential steps of our constructive mechanization in
Coq. Our Theoremproof_decider of Fig. 3 on page 17 abstracts away from the particular
case of R→ by isolating the essential ingredient: an almost full redundancy relation which
satisfies Curry’s lemma.

2 As for coverability in BVASS, it seems that the arguments developed in [7] cannot easily be converted to
constructive ones (private communication with S. Demri).
3 i.e. they are identical when ignoring repetitions and permutations.
4 Dickson’s lemma states that under product order, Nk is a WQO for any k ∈ N.
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In Sect. 5, we instantiate the proof_decider into a constructive decision procedure for
the specific case of R→. For this, we describe how we implement the equivalence between
the Hilbert’s style proof system forR→ and three sequent proof systems forR→: the Gentzen
system LR1→ with an explicit contraction rule, both with a cut rule and cut-free, and the
contraction absorbing and cut-freeLR2→ that is used for the decision procedure.We describe
the implementation of soundness and completeness results, cut-admissibility forLR1→ using
a semantic argument, and Curry’s and Kripke’s lemmas for LR2→. We conclude with the
constructive decider for R→.

The technical aspects of our proofs are sustained by a Coq v8.8+ mechanization which
is available under a Free Software license at: https://github.com/DmxLarchey/Relevant-
decidability. The size of this development is significant—around 15000 lines of code,—
but most of the code is devoted to libraries and the implementations of the proof systems
R→, LR1→ and LR2→ and the links between them: soundness/completeness results,
cut-elimination, sub-formula property, finitely branching proof-search, etc. The case of impli-
cational intuitionistic logic J→ is treated as well in this mechanization but we do not discuss
this less interesting example here. The core of our constructivization of Kripke–Curry’s proof
can be found in the file proof.v and is only around 800 lines long (including comments).

This paper is a revised and completed version of the conference paper [13]. In comparison,
we modify Sect. 2 in marginal ways only. In Sect. 3 however, we add a short introduction to
the type-theoretical tools that we use, more complete explanations with some supplementary
intermediate results and outlines of proofs about almost full relations and bar inductive pred-
icates. Moreover, we give a high-level overview on how the constructive König’s lemma can
be used to bound a finitely branching and redundancy-free search space. We enrich Sect. 4
with short descriptions of the essential proof steps for the main results. We contribute a com-
pletely new Sect. 5 where we give some details above how sequent systems and translations
between them are implemented in Coq. These results correspond to most of the source code
as measured in lines of code. Generally we also provide more frequent pointers to the Coq
source, the pdf version of this completed paper being hyperlinked with the above GitHub
repository.

In preparation for this paper, we have updated the source code corresponding to the
conference paper, but only in marginal ways. However, to maintain synchronization between
paper revisions and source code revisions, we have tagged the above Git repository with tag
v1.0 for the older conference source tree and with tag v2.0 for the later source tree matching
the present paper.

2 Constructive Issues in Kripke’s Decidability Proof

In this section, we recall the main aspects of Kripke’s decidability proof for the implicational
fragment of relevance logic R→, described with Hilbert style proof rules in Fig. 1. We sum
up the description of [18] while focusing on the aspects of the arguments that were challeng-
ing from a constructive perspective. Among the many research directions later suggested
by Riche [17] for solving the missing link—a constructive proof of IDP or of Dickson’s
lemma,—the use of Coquand’s approach to Bar induction [4] turned out as a solution.

Notice that in the notation R→, the symbol → represents the logic-level implication to
stay coherent with [17–19]. But in this paper, we rather use ⊃ to denote object-level logical
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Fig. 1 Hilbert’s style proof system for implicational relevance logic R→

implications to avoid conflicting with the Coq notation for meta-level function types T1→T2;
see e.g. the below definition of HR_proof.5

2.1 What is a Constructive Proof of Relevant Decidability?

Let us formalize the high-level question that we solve in this paper. Before we give a mech-
anized constructive proof of decidability for R→, we need to formally define the language
and provability/proofs, at least for R→. The type F of formulæ of R→ is inductively defined
by A, B : F ::= p | A ⊃ B where p ranges over a fixed enumerable type, e.g. a copy of
the type of natural numbers N. The type HR_proof A of Hilbert-style proofs of A : F

is denoted by �h A and can straightforwardly be defined in Coq using the (informative)
inductive predicate:

Inductive HR_proof : F → Set :=
| id : ∀A, �h A ⊃ A
| pfx : ∀A B C, �h (A ⊃ B) ⊃ (C ⊃ A) ⊃ (C ⊃ B)

| comm : ∀A B C, �h (A ⊃ B ⊃ C) ⊃ (B ⊃ A ⊃ C)

| cntr : ∀A B, �h (A ⊃ A ⊃ B) ⊃ (A ⊃ B)

| mp : ∀A B, �h A ⊃ B → �h A → �h B
where “ �h A ” := (HR_proof A).

which reflects the rules of the Hilbert system for R→ of Fig. 1. A constructive decidability
proof for R→ would then be given by a term HR_decidability of type:

HR_decidability : ∀A : F,
{
inhabited(�h A)

} + {¬inhabited(�h A)
}

i.e. a total computable function which maps every formula A to a boolean value which if
true, ensures that there is a proof of A, and if false ensures that there is no proof of A.
A constructive decider is a stronger result of type:

HR_decider : ∀A : F, (�h A) + (�h A → False)

that is a total computable function that maps every formula A to either a proof of A or else
ensures that no such proof can exist. This absence of a proof for A is witnessed by a function
mapping proofs of A to (proofs of) an absurdity. In other words, a constructive decider is an
(always terminating) constructive proof-search algorithm. Obviously, adding axioms to Coq
might hinder the computability of its terms (ensured by the normalization property of Coq).
Hence, we allow no axiom and we aim at defining HR_decidability or HR_decider
in axiom-free Coq.

2.2 Sequent Calculi for R→

Hilbert’s style R→ formulation is (unsurprisingly) not really suited to designing decision
procedures based on proof-search. A standard approach is to convert Hilbert’s systems into

5 Moreover, in type theory, the function type subsumes logical implication via the BHK interpretation where
proofs of A → B are viewed as functions mapping proofs of A to proofs of B.
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Fig. 2 The LR1→ sequent calculus rules for implicational relevance logic R→

sequent rules such as those of LR1→ in Fig. 2 (see also [18]). In this particular system, a
sequent � � A is composed of a multiset � of formulæ on the left of the � symbol and
exactly one formula A on the right of the � symbol. There are three structural rules: 〈AX〉,
〈�W〉 and 〈CUT〉, and two logical rules: 〈�⊃〉 and 〈⊃�〉. The soundness/completeness of this
conversion to sequent calculus is ensured by the following result: a formula A has a Hilbert
proof �h A if and only if the sequent ∅ � A has a proof in LR1→ (with ∅ as the empty
multiset); see Sect. 5.2 or file relevant_equiv.v for the mechanized proof.

Although designed for proof-search, the sequent system LR1→ still suffers two major
problems when considering fully automated procedures: one is the 〈CUT〉 rule and the other
is the more problematic contraction rule 〈�W〉.Cut-elimination is one of the central questions
of proof-theory, partly because 〈CUT〉 makes proof-search infinitely branching. Fortunately,
the 〈CUT〉 rule is admissible in LR1→ so we can safely remove that rule from LR1→; see
Sect. 5.2 or file sem_cut_adm.v.

On the other hand 〈�W〉 needs to be handled much more carefully. The trick of Curry,
which is well described in [18] is to absorb several instances of 〈�W〉 in the rule 〈�⊃〉 but in
a tightly controlled way.6 By replacing both rules 〈�W〉 and 〈�⊃〉 with the single rule 〈�⊃2〉

� � A B,� � C

�, A ⊃ B � C
[�⊃2] when LR2c(A ⊃ B, �,�,�)

he obtains the system LR2→ composed of the three rules 〈AX〉, 〈⊃�〉 and 〈�⊃2〉. The side
condition LR2c(A ⊃ B, �,�,�) is a bit complicated to express formally so we will infor-
mally sumup its central idea: while applying 〈�⊃2〉 top-down, some controlled/bounded form
of contraction is allowed on every formula: the principal formula A ⊃ B can be contracted
at most twice while side formulæ in �,� can be contracted at most once. See the definition
of LR2c in Sect. 5.2 for a working and precise characterization.

2.3 Irredundant Proofs in LR2→

Before usingLR2→ for decidingR→,LR2→ must of course be proved equivalent toLR1→
and this is not a trivial task; Sect. 5 is specifically devoted to those technical details. The
cornerstone of the equivalence betweenLR2→ andLR1→ lies in a critical property ofLR2→
called Curry’s lemma. It ensures both:

– the admissibility of the contraction rule 〈�W〉 in LR2→;
– the completeness of irredundant proof-search in LR2→.

We say that a sequent � � A is redundant over a sequent � � B and we denote � � B ≺r

� � A if � � B can be obtained from � � A by repeated top-down applications of the
contraction rule 〈�W〉. It is also convenient to characterize redundancy using the number of

6 Unrestricted contraction would generate infinitely branching proof-search.
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occurrences |�|α of the formula α in the multiset �:

� � B ≺r � � A ⇐⇒ A = B ∧ ∀α, |�|α ≺N

r |�|α (≺r)

where the binary relation n ≺N
r m on N is defined by

n ≺N

r m ⇐⇒ n ≤ m ∧ (n = 0 ⇔ m = 0) (≺N
r )

Now we can formulate Curry’s lemma which (in modern terms) states that the contraction
rule 〈�W〉 is height preserving admissible in LR2→.

Lemma 1 (Curry [5], 1950) Consider two sequents such that � � A is redundant over
� � B, i.e. � � B ≺r � � A. Then any LR2→-proof of � � A can be contracted into an
LR2→-proof of � � B, that is, a proof of lesser height.

The Coq proof term is LR2_Curry and it is presented in Sect. 5.3 and implemented in file
relevant_LR2.v. Regular admissibility of contraction follows trivially from Curry’s lemma
and hence the completeness ofLR2→ w.r.t. 〈CUT〉-freeLR1→. Another critical consequence
of Curry’s lemma is related to irredundant proofs.

Definition 1 (Irredundant proof) A proof is redundant if there is a redundant pair in one of
its branches, i.e. � � B ≺r � � A where � � A occurs in the sub-proof of � � B. A proof
is irredundant if none of its branches contain a redundant pair.

By Curry’s lemma, any sequent provable in LR2→ has an irredundant proof in LR2→.
The argument is not completely trivial and involves the notion of everywhere minimal proof
(see Sect. 4). As a consequence, while searching for proofs in LR2→ one can safely mark
redundancies as dead ends: avoiding redundancies is a complete strategy.

2.4 Kripke’s Decidability Proof

Building on Curry’s lemma, the key insight of Kripke’s proof of decidability is the following
result. As explained in [8,17], it was discoveredmany times in different fields ofmathematics,
as e.g. Hilbert’s finite basis theorem, the infinite division principle (IDP by Meyer [14]),
Dickson’s lemma, etc.We express Kripke’s lemmawith a concept that was not clearly spotted
at that time but was popularized later on, that of well quasi order.

Definition 2 (Well Quasi Order) A binary relation ≤ over a set X is a well quasi order
(WQO) if it is reflexive, transitive and any infinite sequence x : N→ X contains a good pair
(i, j), which means both i < j and xi ≤ x j .

Lemma 2 (Kripke [12], 1959) Given a finite set of formulæ S, the redundancy relation ≺r is
a WQO when it is restricted to sequents composed exclusively of formulæ in S.

Proof By Ramsey’s theorem, the product (or intersection) of two WQOs is WQO.7 Hence,
the relation ≺N

r over N is a WQO as the intersection of two WQOs; see Equation (≺N
r ). By

finiteness of S, the identity relation =S on S is also a WQO (this is an instance of the pigeon

7 This result is known as Dickson’s lemma when restricted to N
k with the point-wise product order. The

inclusion relation between multisets built from the finite set S is a particular case of the product order Nk

where k is the cardinal of S.
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hole principle). Denoting ≺S
r for the restriction of ≺r to the sequents composed of formulæ

in the finite set S, we can derive the equivalence

� � B ≺S
r � � A ⇐⇒ A =S B ∧ ∧

α∈S |�|α ≺N
r |�|α

hence ≺S
r is a WQO as a finite intersection of WQOs. ��

Kripke’s argument of decidability for entailment in the sequent calculusLR2→ (and hence
R→) can be summarized in the following steps:

– consider a start sequent � � A and let S be its finite set of sub-formulæ;
– launch backward proof-search for irredundant proofs of � � A in LR2→, i.e. search

stops when no rule is applicable or at a redundancy. We denote by T the corresponding
(potentially infinite) proof-search tree;

– by the sub-formula property, no formula outside of S can occur in T ;
– T is finitely branching (critically relies on the side condition of rule 〈�⊃2〉);
– if T had an infinite branch, it would contain a redundancy (Kripke’s lemma);
– hence by König’s lemma, the proof-search tree T is finite.

In [17], Riche focuses on Kripke/Dickson’s lemma as the main difficulty to get an argu-
mentation that could be accepted from a constructive point of view. We think that König’s
lemma is also a potentially non-constructive result [21], depending on its precise formulation.
In Sect. 4, we explain how to overcome these two difficulties and transform this method into
a generic decider by an axiom-free constructive proof of decidability, that we later instantiate
on LR2→ in Sect. 5 to get a constructive decider for R→ in Coq.

3 InductiveWell Quasi Orders in Type Theory

From now on, we switch to the language of Inductive Type Theory instead of the usual set
theoretical language. After a summary of basic type theoretic notations, we define the notions
of finiteness, the type of finite trees and their branches, and then of almost full relations, a
notion which constructively characterizes WQOs. We finish with a proof of a constructive
form of König’s lemma.

3.1 Some Basic Notions in Type Theory

We recall the basic notions of propositions, dependent sub-types, Peano natural numbers and
polymorphic lists that are the building blocks over which we develop our theory. They all
belong to the Coq standard library.8 We denote by Type the members of the family of type
universes (hiding their indices). The type Prop of propositions will be denoted by P for
conciseness and False : P represents the empty proposition which types no proof term and
thus implements absurdity. Given a type X : Type and a predicate P : X →P, we denote by
{x : X | P x} the sub-type defined by P , i.e. the type theoretic dependent sum �x : X , P x
composed of pairs (x, Hx ) where x : X and Hx : P x is a proof that P holds at point x .

Peano natural numbers are inductively defined by n : N ::= 0 | 1 + n and by L X the
(polymorphic) type of lists over X inductively defined by l : L X ::= [] | x :: l where
x : X . The symbol [] denotes the empty list and we may write [x1; . . . ; xn] for the list
x1 :: · · · :: xn :: []. Given a function f : X → Y , we denote map f as the lifting of f

8 The Coq standard library is documented at https://coq.inria.fr/library.
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to L X → L Y and characterized by map f [x1; . . . ; xn] = [ f x1; . . . ; f xn]. The function
rev : L X → L X implements list reversal and satisfies rev [] = [], rev(x :: []) = x :: []
and rev(l ++ m) = revm ++ rev l. We write x ∈l l as a short infix notation for
In (x : X) (l : L X) : P, the list membership predicate defined by the following fixpoint
equations x ∈l [] := False and x ∈l (y :: l) := x = y ∨ x ∈l l. We also use ⊆l

as a short notation for list inclusion, i.e. l ⊆l m := ∀x, x ∈l l → x ∈l m. For any
predicate P : X → P, we denote by ∀lP l for finite universal quantification over the list l,
i.e. ∀lP l ↔ (∀x, x ∈l l → P x). Notice that the ∀lP predicate (denoted Forall P in Coq
standard library) is equivalently defined as an inductive predicate in the Listmodule of the
standard library.

3.2 Finiteness, Trees and Branches

The predicate fint P states that a sub-type P : X → P is finite and computable into a list:

Definition fint {X : Type} (P : X → P) := {l : L X | ∀x, x ∈l l ↔ P x}.
Inhabitants of fint P are dependent pairs (l, Hl) where Hl is a proof that l is indeed a finite
extensional description of P: membership in l is equivalent to P . Notice that the braces
around parameter {X : Type} specify an implicit parameter in the definition of fint.

We define the type of finitely branching (oriented) trees as generated by a single inductive
rule (see file tree.v). A tree is a label in X together with a list of (sub-)trees:

Inductive T X := in_tree : X → L (T X) → T X .

We use 〈x | l 〉 as a short notation for in_tree x l. The root : T X → X of a tree verifies
root 〈x | _〉 = x , the sons : T X → L (T X) verifies sons 〈_ | l 〉 = l, and the height
ht : T X → N of a tree verifies ht 〈_ | l 〉 = 1 + max (map ht l).

Branches of trees are represented by specific lists of elements of type X . We inductively
characterize the branch predicate

Inductive branch : T X → L X → P :=
| in_tb0 : ∀t, branch t []
| in_tb1 : ∀x, branch 〈x | []〉 (x :: [])
| in_tb2 : ∀ b x l t, t ∈l l → branch t b → branch 〈x | l 〉 (x :: b).

such that the lists b which satisfy branch t b collect all the nodes encountered on paths
from the root of t to one of its internal nodes. The empty list [] is among them. Notice that
branches are listed from the tree root to its leaves. If one wants branches ordered from leaves
to the root, one should further apply the list reversal function rev.

3.3 Good Lists, Almost Full Relations and Bar Inductive Predicates

In this sectionwe describe an inductive formulation of the notion ofWQO. Type theoretically,
Definition 2 becomes: aWQO is a reflexive and transitive predicate≺r : X →X →P such that
for any f : N→ X , there exists i, j : N such that i < j and fi ≺r f j (good pair). We can say
that any infinite sequence is bound to be redundant. We recall the inductive characterization
of WQO due to Fridlender and Coquand [10] and the constructive Ramsey theorem [25],
from which we derive a constructive proof of Kripke’s lemma. The corresponding Coq code
can be found in our library file almost_full.v.
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Much like well founded relations can be defined inductively by accessibility predicates
(see module Wf of Coq standard library), WQOs can inductively be defined either by the
almost full inductive predicate (AF) or by bar inductive predicates. Notice that these two
equivalent inductive characterizations are constructively stronger than the usual classical
definition (like in the case of well-foundedness).

Let us consider a type X : Type and an abstract (redundancy) relation R : X → X →P.9

We define the good R : L X →P predicate that characterizes the (finite) lists which contain
a good pair:

good R [xn−1; . . . ; x0] ↔ ∃ i j, i < j < n ∧ xi R x j (good)

Hence the list [. . . ; b; . . . ; a; . . .] is good when a R b. The list is read from right to left
because we represent the n-prefix of a sequence f : N → X by [ fn−1; . . . ; f0].
Definition 3 (Ir/redundant) Given a relation R : X → X → P called redundancy, a list of
values l : L X is redundant if good R l holds, and is irredundant if ¬(good R l) holds.
We denote the later case by bad R l := ¬(good R l).

The lifting of a (binary) relation R : X → X → P by x : X is denoted R ↑ x and
characterized by:

u (R ↑ x) v ↔ u R v ∨ x R u for any u, v : X

The disjunct x R u prohibits any u which is R-greater than x to occur in (R ↑ x)-bad
sequences. AF relations are defined as those satisfying the aft predicate:

Inductive aft {X : Type} (R : X → X → P) : Type :=
| in_af_t0 : (∀x y, x R y

) → aft R
| in_af_t1 : (∀x, aft (R ↑ x)

) → aft R.

Hence any full relation (i.e. ∀x y, x R y) is AF, and if every lifting of R is AF, then so is R.
Notice that the predicate aft is informative: it contains a well-founded tree of liftings until
the relation becomes full (see [25]). We will use this information to compute bounds.

It is trivial to show that aft is a monotonic predicate, i.e. R ⊆ S → aft R → aft S. Also
somewhat easy to show but very useful to transfer almost fullness between relations over
different base types, the aft predicate is preserved by surjective relational morphisms:

Proposition af_t_relmap X Y ( f : X → Y → P) R S :(∀y, {x | f x y})→(∀xx ′yy′, f x y → f x ′ y′ →x R x ′ → y S y′)→aft R →aft S.

Proof By induction on aft R after having generalized the hypotheses that depend on S. ��
The fact that f is a relational morphism (and not just a functional morphism) in this result
is especially useful when transporting aft to a �-type like {x | P x} because it is generally
not possible to define surjective functions to such a type.

Reflexive and transitive relations which satisfy aft are WQOs in the classical interpre-
tation. But constructively speaking, they are stronger in the following sense: any sequence
f : N → X can effectively be transformed into an upper-bound n under which there exists a
good pair, upper-bound obtained by finite inspection of the prefixes of f :

Lemma af_t_inf_chain (X : Type) (R : X → X → P) :
aft R → ∀ f : N → X , {n : N | ∃ i j, i < j < n ∧ fi R f j }.

9 We temporarily use letters like R or S to represent binary redundancy relations because some of the next
results involve several of such relations.
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Proof By induction on the aft R predicate. ��
The constructive Ramsey theorem [25] states that almost full relations are closed under
(binary) intersection:

Theorem af_t_inter (X : Type) (R S : X → X → P) :
aft R → aft S → aft(R ∩ S).

and as an immediate consequence, under direct products:

Theorem af_t_prod (X Y : Type) (R : X → X → P) (S : Y → Y → P) :
aft R → aft S → aft (R × S).

Wedo not recall the beautiful proof of this theoremwhich is implemented in file af_t.v follow-
ing Coquand’s outline [25]. Notice that reflexivity and transitivity of WQOs are completely
orthogonal to almost fullness in these results. They play no role in our development.

The aft R predicate characterizing the almost fullness of the (redundancy) relation R can
alternatively10 be defined by bar inductive predicates [10] as bart (good R) [] with the
following inductive definition:

Inductive bart {X : Type} (P : L X → P) (l : L X) : Type :=
| in_bar_t0 : P l → bart P l
| in_bar_t1 : (∀x, bart P (x :: l)

) → bart P l.

Hence, bart P l means that regardless of the repeated extensions of the list l by adding
elements at its head, the predicate P is bound to be reached at some point. In particular,
assuming bart P [], then, for any given sequence f : N→ X , one can compute n such that
P [ fn−1; . . . ; f0] holds:
Theorem bar_t_inv X (P : L X → P) : bart P [] → ∀ f ,

{
n | P [ fn−1; . . . ; f0]

}
.

Proof We generalize to bart P l → ∀ f n, l = [ fn−1; . . . ; f0] → {
m | P [ fm−1; . . . ; f0]

}

and prove that statement by induction on bart P l; see file bar_t.v for this short proof. ��
We now establish the equivalence between aft predicates and the bart predicates. We

denote R�l for R�[x1, . . . , xn] := R↑xn . . .↑x1 andwe show the following theoremwhich
establishes an informative equivalence between the aft predicate and the bart predicate:

Theorem bar_t_af_t_eq X (R : X → X → P) l : aft(R � l) ↔ bart (good R) l.

Proof It is easy to prove bart (good R) l →aft(R � l) by induction on bart (good R) l.
For the converse implication, we generalize the statement to aft R′ → ∀S l, R′ ⊆ S � l →
bart (good S) l which we show by induction on aft R′. Then, given R and l, we instantiate
the result with R′ := R � l and S := R and get aft(R � l) → bart (good R) l; see
file af_bar_t.v for details. ��
Corollary af_t_bar_t X (R : X → X → P) : aft R ↔ bart (good R) [].
Proof Straightforward instance of bar_t_af_t_eq with l := []. ��

10 see Corollary af_t_bar_t below.
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3.4 A Constructive form of König’s Lemma

Using the inductive Fan theorem [10], we derive a constructive König’s lemma. Brouwer’s
Fan theorem can be proved equivalent to the binary form ofKönig’s lemma [21]. So one could
wrongfully be led to the conclusion that both of these results cannot be constructively estab-
lished. Here we explain that using suitable inductive definitions, such results can perfectly
be established constructively.

For the rest of this section, we assume a type X : Type. We recall the inductive interpre-
tation of the Fan theorem [10]. Given a list of lists ll : L (L X), we define the list of choice
sequences (or Fan) of ll denoted list_fan ll

Definition list_fan : L (L X) → L (L X).

The precise definition of list_fan uses auxiliary functions (see file list_fan.v) but this
is unimportant here. Only the following specification which characterizes the elements of
list_fan [l1; . . . ; ln] as choices sequences for [l1; . . . ; ln] matters.

[x1; . . . ; xm] ∈l list_fan [l1; . . . ; ln] ↔ n = m ∧ x1 ∈l l1 ∧ · · · ∧ xn ∈l ln (FAN)

These are the lists composed of one element of l1, then one element of l2 ... and one element
of ln . The following result [10] states that if P is monotonic and bound to be reached by
successive extensions starting from [], then P is bound to be reached uniformly over the
finitary Fan represented by choices sequences.

Theorem fan_t_on_list (P : L X → P)
(
MonoP : ∀ x l, P l → P(x :: l)

) :
bart P [] → bart

(
fun ll �→ ∀l P (list_fan ll)

) [].
Proof This proof is implemented in the file bar_t.v and follows the script of [10]. We give a
short overview here. Using MonoP , we show by induction on l that P m → P(l ++m). Then
we define the predicate Q := fun u ll �→ ∀l

(
fun v �→ P(v ++ u)

)
(list_fan ll) and

showMonoQ : ∀ u x l, Q u l → Q u (x ::l). By induction on the predicate bart P u, we show
bart P u → bart (Q u) []. As a consequence, from bart P [] we deduce bart (Q []) []
hence the result since Q [] is equivalent to fun ll �→ ∀l P (list_fan ll). ��

We derive the following strong form of König’s lemma. Given an almost full (redundancy)
relation≺r : X → X →P and a sequence of finitary choices f : N→L X , beyond an effective
lower-bound n, every finite prefix of a choice sequence for f is redundant.

Theorem Constructive_Koenigs_lemma (≺r : X → X → P) ( f : N → L X) :
aft(≺r) → {

n : N ∣∣ ∀m, n ≤ m → ∀l (good ≺r) (list_fan [ fm−1; . . . ; f0])
}
.

Proof From aft(≺r) one gets bart (good≺r) [] using Corollary af_t_bar_t. Because
good≺r is a monotonic relation (i.e. good≺r l → good≺r (x :: l)), we can apply Theo-
rem fan_t_on_list to get bart (fun ll �→ ∀l (good≺r) (list_fan ll)) []. We apply
Theorembar_t_invusing f and computen s.t.∀l (good≺r) (list_fan [ fn−1; . . . ; f0]).

Now let m ≥ n and l ∈l list_fan [ fm−1; . . . ; f0]. By Equation (FAN), we can
write l = [xm−1; . . . ; xn; xn−1; . . . ; x0] and split it into l1 := [xm−1; . . . ; xn] and l2 :=
[xn−1; . . . ; x0] so that l = l1++l2 and l2 ∈l list_fan [ fn−1; . . . ; f0]. As a consequence,
good ≺r l2 holds and hence, so does good ≺r (l1 ++ l2). See file koenig.v for details. ��

123

https://github.com/DmxLarchey/Relevant-decidability/blob/v2.0/list-fan.v
https://github.com/DmxLarchey/Relevant-decidability/blob/v2.0/bar_t.v
https://github.com/DmxLarchey/Relevant-decidability/blob/v2.0/koenig.v


D. Larchey-Wendling

3.5 Redundancy Avoiding Search via König’s Lemma

We explain how to use Constructive_Koenigs_lemma to bound a redundancy avoid-
ing finitely branching search space described by a (potentially infinite) tree T indexed by
some type X . Because T is finitely branching, we can define a function nextT : L X →L X
s.t.

y ∈l nextT l ↔ y is the son in T of some x ∈l l.

Given a start node x0 in T , the term nextn
T [x0] lists all the nodes of T which are the nth

generation descendants of x0. Hence, the Fan

list_fan
[
nextn−1

T [x0]; . . . ;next0
T [x0]

]

contains all the branches of length n starting at x0 in the tree T . Beware that this over-
approximation is usually strict. When the redundancy relation ≺r is almost full, we can
apply Constructive_Koenigs_lemma to f := fun n �→ nextn

T [x0] and compute
an upper bound on the length of irredundant (i.e. bad ≺r) branches originating at x0 in T .

4 Decision via Redundancy-Free Proof-Search

In this section, we describe the mechanization of a generic constructive decider based on
redundancy-avoiding proof-search. We first give an informal account of the main arguments,
then we proceed with a more formal description of these steps in the language of Coq. Except
for the previously described tree.v and almost_full.v libraries, all the following development
is contained in the file proof.v.

4.1 Overview of the Assumptions andMain Arguments

Let us consider a type S of statements representing object-level logical propositions. These
statements could, depending on the intended application, be formulæ like in Hilbert style
proof systems, or sequents in sequent proof systems or in some versions of natural deduction,
or more generally structures like nested sequents or even consecutions in Display logic.

Statements are items to be proved or refuted (by showing the impossibility of a proof as
a term of type has_proof s → False). For this, we describe object-level proof systems
as sets of valid rule instances. These instances are generally represented as

H1 · · · Hn

C
or alternatively C � [H1; . . . ; Hn]

whereC : S is the conclusion of the instance and [H1; . . .; Hn] : LS is the list of premises.We
collect the set of valid rule instances into a binary relation� : S→LS→P between individual
statements (S viewed as conclusions) and list of statements (LS viewed as premises). Hence,
the validity of the above rule instance in the proof system is expressed by the predicate
C � [H1; . . . ; Hn]. When dealing with proof-search based decision, infinite horizontal
branching of proof-search is usually forbidden. Hence, for a given C : S, only finitely many
rule instances exist with C as conclusion. Moreover, that finite set of instances must be
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computable to be able to enumerate the next steps of backward proof-search. We denote this
property by rules_fin and we say that � has finite inverse images.11

Valid rules instances are combined to form proof trees. A proof tree is a finite tree of
statements where each node is a valid rule instance. Object-level proofs are proof trees of
their root node and n-bounded proofs are proofs of height bounded by n. Because of the finite
inverse images property rules_fin, the set of n-bounded proofs of a given statement s0 is
finite and computable. We define the notion of minimal proof, which is a proof of minimal
height among the proofs of the same statement. Every proof can effectively be transformed
into a minimal proof by searching among the finitely many proofs of lesser height. An
everywhere minimal proof is such that each of its sub-proof is minimal. Every proof can
effectively be transformed into an everywhere minimal proof.

Our generic constructive technique assumes a binary redundancy relation ≺r between
statements, redundancy which satisfies Curry’s lemma: every proof containing a redundancy
can be contracted into a lesser proof. As a consequence, everywhere minimal proofs are
redundancy free. If we moreover assume that the redundancy relation ≺r is almost full,
i.e. a constructive WQO, then every infinite sequence of statements contains a redundancy.
However, remember that in Kripke’s lemma 2, only the restriction of ≺r to finitely generated
sequents is a WQO. Hence we only assume ≺r to be almost full on the set of sub-statements
of an initial statement,12 say s0. By using the constructive version of König’s lemma of
Sect. 3.4, we show that every sequence of sub-statements of s0 longer than a bound n0

contains a redundancy. The bound n0 can be computed from s0 alone. As a consequence,
every irredundant proof of s0 is a n0-bounded proof. And deciding the provability of s0 is
reduced to testing whether the (finite) set of n0-bounded proofs of s0 is empty or not.

4.2 Proofs, Minimal Proofs and Everywhere Minimal Proofs

In this section, we fix an (abstract) type S of statements and a collection of valid rule instances
represented by a relation � : S → LS → P which has the finite inverse image property.

Variables (S : Type) (� : S → LS → P).

Hypothesis rules_fin : ∀c : S, fint (c � ·).
Here, we use c � · as a short notation for fun hs : LS �→ c � hs. Hence, not only are there
finitelymany rule instances for a given conclusion c but the predicaterules_fin c contains
llc : L (LS), an effective list of those instances which verifies the property hs ∈l llc ↔c � hs
for any hs : LS. This effective aspect of finite branching is often implicit in studies on proof-
search, because if one cannot even compute the valid instances for a given conclusion, then
there is no way to implement backward proof-search.

The object-level notion of proof is based on that of proof tree, a sub-type of the type TS

of trees (of statements) as defined in Sect. 3.2. We define the predicate proof_tree that
satisfies the below (recursive) characteristic property:

Definition proof_tree : T S → P.

∀s l, proof_tree 〈s | l 〉 ↔ s � map root l ∧ ∀t, t ∈l l → proof_tree t .

11 Typically, systems which include a cut-rule do not satisfy the rules_fin property which is why cut-
elimination is viewed as a critical requisite to design sequent-based decision procedures. The same remark
holds for the modus-ponens rule of Hilbert systems, usually making them unsuited for decision procedures.
12 For this, we need a notion of sub-statement that is reflexive, transitive and such that valid rules instances
possess the sub-statement property.
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i.e. trees of statements where each node is a valid rule instance, the conclusion being the
node itself and the premises being the children of the node. Given a statement s, a proof of
s is a proof tree t with root s, and a n-bounded proof is a proof of height bounded by n:

Definition proof (s : S) (t : T S) := proof_tree t ∧ root t = s.
Definition bproof (n : N) (s : S) (t : T S) := proof s t ∧ ht t ≤ n.

Proofs of a given statement s are not necessarily finitelymany but because of the finite inverse
image property rules_fin, n-bounded proofs are:

Proposition bproof_finite_t (n : N) : ∀s : S, fint
(
bproof n s

)
.

Proof We proceed by induction on n. For n = 0, we have bproof 0 s p ↔ False hence
bproof 0 s is empty and thus finite. For 1 + n, we show the following equivalence

bproof (1 + n) s p ↔ ∃k, s1, . . . sk , p1, . . . pk ,

{
p = 〈s | [p1; . . . ; pk ]〉 ∧ s � [s1; . . . ; sk ]
∧ bproof n s1 p1 ∧ · · · ∧ bproof n sk pk .

Because of rules_fin, there are only finitely many lists [s1; . . . ; sk] s.t. s � [s1; . . . ; sk].
By the induction hypothesis, we know that bproof n s is finite for any s. Hence, for any
list [s1; . . . ; sk], there are only finitely many lists [p1; . . . ; pk ] such that bproof n s1 p1 ∧
· · · ∧ bproof n sk pk . Since p must be of the form p = 〈s | [p1; . . . ; pk]〉, this gives only
finitely many possible values for trees p such that bproof (1 + n) s p. ��
We introduce the notion of minimal proof, that is a proof of minimal height among the proofs
with a given root s. We show that every proof t can be transformed into a minimal proof by
a straightforward finitary search of the shortest among the (ht t)-bounded proofs of s, of
which a list can be computed using bproof_finite_t.

Definition min_proof s t := proof s t ∧ ∀t ′, proof s t ′ → ht t ≤ ht t ′.
Proposition proof_minimize s t : proof s t → {

tmin
∣∣ min_proof s tmin

}
.

But to exploit Curry’s lemma, we need amuch strongerminimality property: this is the notion
of everywhere minimal proof tree, where every sub-tree is a minimal proof (of its own root).
Contrary to minimal proofs of which some e.g. short sub-proofs can be further shortened
(because this would not impact the overall height of the proof), everywhere minimal proof
trees cannot be shortened further in any way.

Definition emin_ptree : T S → P.

∀s l, emin_ptree 〈s | l 〉 ↔ min_proof s 〈s | l 〉 ∧ ∀t, t ∈l l → emin_ptree t .

We show that every proof can effectively be transformed into an everywhere minimal proof.

Definition emin_proof s t := proof s t ∧ emin_ptree t .
Proposition proof_eminimize s t : proof s t → {tem | emin_proof s tem}.
Proof The argument proceeds by induction on the height ht t of the proof tree t . It uses
proof_minimize to compute a minimal proof t1 for s and then proceeds inductively on
every immediate sub-proof of t1. ��

4.3 The Completeness of Irredundant Proofs via Curry’s Lemma

We assume an abstract notion of redundancy on statements as binary relation≺r : S→S→P.
A list of statements b : LS (such as e.g. a proof branch) is redundant if it contains a good
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pair for ≺r, which is denoted by good ≺r b (see Sect. 3.3). The list b is irredundant if it
contains no good pair, i.e. bad ≺r b. A tree t : TS is an irredundant proof if it is a proof
and every branch of the tree is irredundant. Since branches are read from the root to leaves,
we use of rev to reverse lists.

Definition irred_proof s t := proof s t ∧ ∀b, branch t b → bad ≺r (rev b).

We now state the assumption Curry abstracting Curry’s lemma:

Hypothesis Curry : ∀s1 s2 t, proof s2 t → s1 ≺r s2 → ∃t ′, ∧
{
proof s1 t ′
ht t ′ ≤ ht t .

assumption under which everywhere minimal proofs become irredundant:

Lemma proof_emin_irred s t : emin_proof s t → irred_proof s t .

Proof Given any branch b of an everywhere minimal proof tree t , we show that b cannot
contain a redundancy, i.e. we show bad ≺r (rev b). So let us assume a good pair s1 ≺r s2
in rev b = l1 ++ s2 :: l2 ++ s1 :: l3 and let us derive a contradiction. Let t1/t2 be the sub
(proof) trees of roots s1/s2. We have b = rev l3 ++ s1 :: rev l2 ++ s2 :: rev l1 hence s2
occurs after s1 in b. Then t2 is a strict sub-tree of t1 and thus ht t2 < ht t1. Using Curry,
we get a proof t ′1 of s1 with ht t ′1 ≤ ht t2. We derive ht t ′1 < ht t1, and thus t1 is not a
minimal proof of s1, contradicting the everywhere minimality of t . ��

Wenow show the completeness of irredundant proofs, i.e. that underCurry’s assumption,
it is enough to search only for irredundant proofs to determine the provability of a statement.
We show that every proof can effectively be transformed into an irredundant one.

Theorem proof_reduce s t : proof s t → {
tirr

∣∣ irred_proof s tirr
}
.

Proof Direct combination of proof_eminimize and proof_emin_irred. ��

4.4 Bounding the Height of Irredundant Proofs

Kripke usedKönig’s lemma to prove the finiteness of the finitely branching irredundant proof-
search tree by showing that it cannot have infinite branches, because those would necessarily
be redundant. The constructive argument works positively by showing that one can compute
a uniform upper-bound over the length of irredundant proof-search branches. We use the
constructive version of König’s lemma of Sect. 3.4 to compute that bound.

To capture the sub-formula property in our setting, we assume an abstract notion of sub-
statement denoted by s1 ⊇sf s2. Beware that

s1 ⊇sf s2 intuitively reads as “the sub-formulæ of s2 are also sub-formulæ of s1”

and not as “s2 is a sub-formula of s1.” We postulate that ⊇sf is both reflexive (sf_refl)
and transitive (sf_trans) and more importantly, that every rule instance preserves sub-
statements bottom-up:

Variables (⊇sf : S → S → P) (sf_refl : ∀s, s ⊇sf s)

(sf_trans : ∀s1 s2 s3, s1 ⊇sf s2 → s2 ⊇sf s3 → s1 ⊇sf s3)

(sf_rules : ∀c hs, c � hs → ∀h, h ∈l hs → c ⊇sf h).
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The hypothesis sf_rules states that any premise h ∈l hs of any valid rule instance c � hs
is composed of sub-formulæ of the conclusion c.

We now follow the construction outlined in Sect. 3.5 to bound the irredundant proof-search
space. Starting from an initial statement s0 : S, we build the proof-search sequence from s0
as the sequence of iterations fun n �→ rules_nextn [s0] of the operator
Let rules_next : L S → L S.

∀ l h, h ∈l rules_next l ↔ ∃ c hs, c ∈l l ∧ h ∈l hs ∧ c � hs.

which collects in a list the statements that occur as premises of some rule instance which
has a conclusion in l, i.e. rules_next l is the (finite) inverse image of l by valid rules
instances. We prove the monotonicity of rules_next, i.e. l ⊆l m → rules_next l ⊆l

rules_next m. The proof-search sequence is composed of sub-statements of s0:

Proposition proof_search_sf s0 n : ∀s, s ∈l rules_nextn [s0] → s0 ⊇sf s.

Proof By induction on n using sf_refl, sf_trans and sf_rules. ��
Because rules_nextn [s0] collects all the statements that might occur at height n in any
proof of s0, the branches of length n of proofs of s0 can be covered using the choices
sequences over

[
rules_next0 [s0]; . . . ;rules_nextn−1 [s0]

]
. We show the following

covering property:

Let FAN n s0 := list_fan
[
rules_nextn−1 [s0]; . . . ;rules_next0 [s0]

]
.

Lemma ptree_proof_search (t : T S) (b : L S) :
branch t b → proof_tree t → rev b ∈l FAN (length b) (root t).

Proof The proof proceeds by induction on the branch t b predicate. The two base
cases are trivial. In the inductive case, it involves the following monotonicity prop-
erty of rules_next: if s1 ∈l rules_next [s2] then rules_nextn [s1] ⊆l

rules_next1+n [s2]. ��
We assume our redundancy hypothesis denoted Kripke which states that the (abstract)

relation ≺r is almost full when restricted to sub-statements of the initial statement s0 (of
which the provability is tested). Using constructive König’s lemma of Sect. 3.4, we derive:

Hypo. Kripke : ∀s0 : S, aft
(≺r restr (fun s �→ s0 ⊇sf s)

)
.

Lemma irredundant_max_length s0 :{
n0

∣∣ ∀ m, n0 ≤ m → ∀l (good ≺r) (FAN m s0)
}
.

Proof Apply Constructive_Koenigs_lemma of Sect. 3.4 to (Kripke s0). ��
Notice that we need the informative predicate aft in Kripke to effectively compute the
upper-bound. We conclude that irredundant proofs are bounded proofs:

Lemma proof_irred_bounded s0 : {n0 | irred_proof s0 ⊆ bproof n0 s0}.
Proof By Lemma irredundant_max_length, from s0 we get n0 so that for any m over
n0, any list inFANm s0 is redundant. Let us now fix an irredundant proof p of s0. To show that
p has height bounded by n0, i.e.bproof n0 s0 p, it is enough to establish that all the branches
of p are shorter than n0. So let us suppose that there is a branch b of p of length m greater
than n0. By Lemma ptree_proof_search, we derive that rev b ∈l FAN m s0. But then
rev b must be redundant, i.e. good ≺r (rev b), contradicting irred_proof s0 p. ��
Hence, given a starting statement s0, we can compute (from s0 and s0 alone) an upper-bound
n0 such that every irredundant proof of s0 is n0-bounded.
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Fig. 3 Constructive decider by redundancy-free proof-search (with pf := proof {S} �)

4.5 The Constructive Decider Based on Redundancy-Free Proof-Search

Under the accumulated hypotheses starting at Sect. 4.2, we build the constructive decider:

Theorem proof_decider (s0 : S) : {
p | proof s0 p

} + {∀p, ¬(proof s0 p)
}
.

Proof From s0, the algorithm uses Lemma proof_irred_bounded to first compute a
bound n0 such that every irredundant proof of s0 has height bounded by n0. Second, the algo-
rithm computes the list of n0-bounded proofs of s0 using Propositionbproof_finite_t, a
list that we can test for emptiness. If it is non-empty then s0 has a n0-bounded proof, and hence
s0 has a proof. Otherwise, there is no n0-bounded proofs for s0, thus there is no irredundant
proof for s0: this is the property of the upper-bound n0 given by proof_irred_bounded.
And then, using Theorem proof_reduce, there is no proof for s0 at all. ��

To get a standalone theorem not dependent on any assumption, we discharge all the
assumptions that were stated from Sect. 4.2 upwards and we display the full abstract result
proof_decider in Fig. 3. Notice that the abbreviation pf denotes proof {S} �, the
argument S being recognized as implicit.

5 The Constructive Decidability of R→

In this section, we use Theoremproof_decider in Fig. 3 to get amechanized constructive
decision procedure for R→. We follow the steps outlined in Sect. 2 and explain how they
are implemented. We have to complete the straightforward inductive definition of the type of
Hilbert proofs for R→ described in Sect. 2.1 with formal definitions of LR1→ and LR2→.
Then we show the equivalence of these systems R→ � LR1→ � LR2→ by giving
translations which preserve provability.

5.1 Sequents, Redundancy and Its Almost-Fullness

The sequent calculi LR1→ and LR2→ have a lot in common. They share the same data-
structure for formulæ, sequents —a multiset of hypotheses and a single conclusion,— and
they share most of their logical rules.

However, the data-structure ofmultisets is not an inductive type. There are arguably several
ways to deal with them. In our case, we choose to model multisets as lists up to permutations.
We write l ∼p m when the lists l and m are identical modulo some permutation. Hence for
every predicate that manipulates multisets, we define it on lists and, when needed, we show
that it is closed under arbitrary permutations.
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Let us write � � A for the sequent (�, A) : LF× F that is a pair composed of a list � of
(hypothesis) formulæ in F and a single conclusion formula A. The notation � � A denotes
a sequent and is irrelevant to its derivability in some system of rules. We define the notion
of sub-statement ⊇sf as follows: first we define the sub-formula relation sfF : F → F → P

as usual, the notation sfF A B meaning that “B is a sub-formula of A”; then, for a sequent
� � A, we define

sf_Seq (� � A) (B : F) := sfF A B ∨ ∃γ, γ ∈l � ∧ sfF γ B

i.e. sf_Seq (� � A) collects all the sub-formulæ occurring in � � A; finally, we define the
sub-statement relation between sequents as

(� � A) ⊇sf (� � B) := sf_Seq (� � B) ⊆ sf_Seq (� � A)

meaning that the sub-formulæ of � � B are also sub-formulæ of � � A. Given the previous
definition of the sub-formulæ of a given sequent, we show

Proposition sf_Seq_finite_t (� � A) : fint
(
sf_Seq (� � A)

)
.

Proof We compute a list composed of exactly the sub-formulæ of all the formulæ that occur
in � ∪ {A}, by induction on formulæ and then on lists of formulæ. ��

The contraction relation denoted�c, and its converse, the redundancy relation denoted≺r,
of the same type �c,≺r : LF → LF → P, are defined between two lists of formulæ by

� �c � := � ≺r � := ∀α, |�|α ≺N

r |�|α and n ≺N

r m := 1 ≤ n ≤ m ∨ n = m = 0.

Since the number of occurrences |�|α is closed under permutations, this definition is suitable
for multisets as well. We show that redundancy ≺r between lists of formulæ is an almost full
relation when restricted to a finite sub-type of F:

Theorem af_t_list_contract (P : F → P) : fint P → aft (≺r restr ∀lP).

Proof We first establish that ≺N
r is almost full, i.e. aft

(≺N
r

)
. For this we show n ≺N

r m iff
n ≤ m ∧ (n = 0 ↔ m = 0) and we use Ramsey’s theorem at_t_inter of Sect. 3.3. For
the binary inequality relation ≤ : N→N→P, we show that it is almost full by first proving
aft(≤ ↑ n) by induction on n : N. Then we get aft(≤) using the second rule in_af_t1.
For the proof of aft(fun n m �→ n = 0 ↔ m = 0), apply in_af_t1 twice and then
in_af_t0.

Now, assuming P is finite, we show that ≺r is almost full when restricted to lists l : LF

which contain solely elements in P , i.e. which lists l satisfy ∀lP l. We first get a list lP : LF

such that x ∈l lP ↔ P x . Then we prove aft
(
fun l m �→ ∀x, x ∈l lP →|l|x ≺N

r |m|x
)
by

structural induction on lP . For the induction step, we use Ramsey’s theorem af_t_prod of
Sect. 3.3. These mechanized proofs occur in files af_t.v and list_contract_af.v. ��

Notice than in case P is an infinite sub-type then ≺r restricted to ∀lP is not an almost
full relation. To see that, consider an injective sequence f : N→F such that ∀n, P fn . Then
the sequence fun n �→ [ fn] of singleton lists in ∀lP does not contain any redundant pair.

The redundancy relation is extended to sequents, overloading the ≺r notation with

� � B ≺r � � A := A = B ∧ � ≺r �

and we can now establish Kripke’s lemma for LR2→:

Theorem Kripke_LR2 (� � A) : aft
(≺r restr (fun � � B �→ � � A ⊇sf � � B)

)
.
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Proof We have aft
(≺r restr ∀l(sf_Seq (� � A))

)
by sf_Seq_finite_t and The-

orem af_t_list_contract above. Then we show aft
(= restr (sf_Seq (� � A))

)

using the fact that the identity relation = is almost full on any finite subset; this follows from
the pigeonhole principle onwhichwedonot elaborate here. Thenwe form the product of these
two restricted relations

(≺r restr ∀l(sf_Seq (� � A))
) × (= restr (sf_Seq (� �

A))
)
which is almost full by Ramsey’s theorem af_t_prod of Sect. 3.3. We project this

product on ≺r restr (fun � � B �→ � � A ⊇sf � � B) using a surjective relational
morphism to get the result via Proposition af_t_relmap of Sect. 3.3. The Kripke_LR2
result itself is mechanized in file relevant_LR2_dec.v. ��

5.2 The Sequent Calculi LR1→ and LR2→

We instantiate the abstract notion of statement assumed in Sect. 4 with sequents, hence we
define S := LF × F. We implement individual rules are subsets of (valid) instances over S,
i.e. predicates of type S → LS → P. Hence, for instance, the rule 〈�⊃〉 is implemented by:

Inductive LR_rule_l : S → LS → P := in_LRl : ∀ � �� A B C,

� ∼p A ⊃ B :: � ++ � → LR_rule_l (� � C) [� � A; B :: � � C].
In the file sequent_rules.v, we definerule_id,LR_rule_r,LR_rule_l,LR2_rule_l,
rule_cntr and rule_cut all of type S → LS → P to implement the rules 〈AX〉, 〈⊃�〉,
〈�⊃〉, 〈�⊃2〉, 〈�W〉 and 〈CUT〉 respectively. The rule 〈�⊃2〉 is interesting to compare with
〈�⊃〉
Inductive LR2_rule_l : S → LS → P := in_LR2l : ∀ � ��� A B C,

� ∼p A⊃B::�→LR2c (A⊃B)� ��→LR2_rule_l (� � C) [� � A; B :: � � C].
Indeed notice the side condition LR2c (A ⊃ B) � � � which implements the controlled
absorption of the contraction rule in 〈�⊃2〉. The predicate LR2c α � � � is defined as

LR2c α � � � := LR2c2 |�|α |�|α |�|α ∧ ∀β, α �= β → LR2c1 |�|β |�|β |�|β
where

{
LR2c1 x y z := z ≤ 1 ∧ z ≤ x + y ∧ max x y ≤ z ∨ 2 ≤ z = x + y
LR2c2 x y z := z ≤ 1 ∧ z ≤ x + y ∧ max x y ≤ 1 ∨ 2 ≤ z = x + y

but other choices are possible for this LR2c α � � � side condition.
We define the systems LR1→ (cut-free), LR1→ (with cut) and LR2→ (cut-free) as

LR1_rules := rule_id ∪ LR_rule_r ∪ LR_rule_l ∪ rule_cntr
LR1_rules_wc := LR1_rules ∪ rule_cut
LR2_rules := rule_id ∪ LR_rule_r ∪ LR2_rule_l

where each term has type S → LS → P and ∪ represents binary predicate union. We can
then easily define refined notions of proofs/provability such as e.g.:

– LR1→ proofs (with cuts) as LR1_proof := proof LR1_rules_wc;
– cut-free LR1→ provability LR1_cf_provable s := ∃t,proof LR1_rules s t ;
– LR2→ provability up-to height n as

LR2_bprovable n s := ∃t,bproof LR2_rules n s t .
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Then we establish soundness theorems for translations between these proof systems, leading
to the equivalence between those systems; see file relevant_equiv.v for these mechanized
high-level results.

Theorem HR_LR1 A : HR_proof A → LR1_proof([] � A).

Proof Straightforward by induction on HR_proof A. ��
Theorem LR1_cut_admissibility : LR1_provable ⊆ LR1_cf_provable.

Proof This is a cut-admissibility result and many proofs are possible but none of them are
really straightforward. We use a semantic proof based the soundness of phase semantics and
Okada’s argument [15]; see file sem_cut_adm.v. ��
Theorem LR1_cf_LR2 : LR1_cf_bprovable ⊆ LR2_bprovable.

Of which the proof is postponed to Sect. 5.3 because it involves Curry’s lemma.

Theorem LR2_HR A : LR2_proof ([] � A) → HR_proof A.

Proof We generalize the statement to LR2_proof (� � A) → HR_proof (� � A) where
� is defined by [γ1; . . . ; γk] � A := γk ⊃ · · · ⊃ γ1 ⊃ A. We prove the generalized statement
by induction on LR2_proof (� � A). The only difficulty is to show that the side condition
LR2c (A ⊃ B) � � � implies contraction, i.e. that A ⊃ B ::� ++� �c A ⊃ B ::� holds. ��

We finish with a proof that LR2→ has finite inverse images:

Lemma LR2_rules_finite_t A : fint(LR2_rules A).

Proof It is sufficient to show that this property holds for each of its individual rules:rule_id,
LR_rule_r andLR2_rule_l. In particular, for ruleLR2_rule_l,weusefint

(
fun c �→

let (�,�) := c in LR2c α � � �
)
which states that there are only finitely many pairs

(�,�) such that LR2c α � � �. Hence even though the side condition LR2c (A⊃ B) � � �

allows for many contractions to occur in the instances of rule LR2_rule_l, it still limits the
number of possible instances to finitely many; see file relevant_LR2.v for the mechanized
proof. ��

5.3 Curry’s Lemma for LR2→

We state and prove Curry’s lemma using the notion of bounded provability.

Lemma LR2_Curry n � � A B :
� � B ≺r � � A → LR2_bprovable n (� � A) → LR2_bprovable n (� � B).

Proof The proof is implemented in file relevant_LR2.v and proceeds by induction on the
second argument LR2_bprovable n (� � A), using a tailored induction principle imple-
mented under the name LR2_bprovable_ind. The following simulation property

LR2c α � � � → α :: � �c � → ∃ �′ �′ �′,
{

� �c �′ ∧ � �c �′ ∧
� ∼p α :: �′ ∧ LR2c α �′ �′ �′

is essential to deal with the case of rule LR2_rule_l and proved in the file
relevant_contract.v under the name LR2c_contract_cons. ��
Theorem LR1_cf_LR2 : LR1_cf_bprovable ⊆ LR2_bprovable.

Proof The only difficulty in this proof by induction on LR1_cf_bprovable n (� � A)

is the case of the contraction rule rule_cntr and it is solved using Lemma LR2_Curry
above. ��
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5.4 Decidability for R→ via LR2→

We can derive a constructive decider for the LR2→ sequent calculus:

Theorem LR2_decider (� � A) :{
t | proof LR2_rules (� � A) t

} + {∀t, ¬ proof LR2_rules (� � A) t
}
.

Proof We use the proof_decider theorem in Fig. 3 in combination with Kripke_LR2
for Sect. 5.1 and LR2_Curry from Sect. 5.3; see file relevant_LR2_dec.v. ��
Using the soundness of translations between R→ � LR1→ � LR2→, we get the con-
structive decider for R→ specified in Sect. 2.1:

Theorem HR_decider : ∀A : F, HR_proof A + (HR_proof A → False).

Proof Given a formula A, use LR2_decider to decide whether [] � A has an LR2→ proof
or not. In case [] � A has an LR2→ proof, then by Theorem LR2_HR of Sect. 5.2, we get an
inhabitant of HR_proof A. Otherwise, from the function ∀t, ¬ proof LR2_rules (� �
A) t we show that no term of type HR_proof A can exist. So let us assume pA :
HR_proof A. By Theorems HR_LR1, LR1_cut_admissibility and LR1_cf_LR2
of Sect. 5.2, their must exist a proof tA of [] � A in LR2→, which thus contradicts
¬ proof LR2_rules ([] � A) tA; see file logical_deciders.v for the mechanized proof. ��

6 Conclusion and Perspectives

We present an abstract and constructive view of Kripke–Curry’s method for deciding Impli-
cational Relevance LogicR→. We get an axiom-free Coq implementation that we instantiate
on LR2→ to derive a constructive decider for R→. Although not presented in this paper,
our implementation includes a constructive decider for implicational intuitionistic logic J→
which shares the same language for formulæ as R→. It is based on a variant of Gentzen’s
sequent calculus LJ. Unlike what happens with richer fragments of Relevance Logic [23],
extensions of this method to full propositional IL would present no difficulty.

From a complexity perspective, Kripke’s decidability proof for R→ based on Dickson’s
lemma might be analyzed using control functions as in [8] to classify its complexity in the
Fast Growing Hierarchy. Notice however that these techniques involve classical formulations
of WQOs and their conversion to a constructive setting is far from evident. Furthermore, the
2- ExpTime complexity characterization of [19] was not obtained via control functions nor
Dickson’s lemma.

Kripke–Curry’s method has a potential use well beyond R→ or Dickson’s lemma and
might be able to provide decidability for logics of still unknown and presumably high com-
plexities. A very difficult casewould be to get a constructive proof of decidability for the logic
of Bunched Implications BI [11] based on Kripke–Curry’s method. Indeed, as is the case
for LR1→, contraction (and weakening) cannot be completely removed from the bunched
sequent calculus LBI. It is not obvious what notion of redundancy could be used in that case.

The somewhat short decidability “proof” of ticket entailment [2] contains glitches that
were uncovered in [6]. Analyzing that proof attempt is another obvious perspective of this
work because it is also based on Kripke–Curry’s method. We hope to better characterize
the source of the problem and determine if it can be repaired or not, like what was done
for the case of a faulty proof of decidability of MELL [22]. The situation is a bit different
however because the decidability result for ticket entailment was independently obtained by
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Padovani [16] with seemingly much more involved techniques such as the use of Kruskal’s
tree theorem. Still, Kruskal’s tree theorem is also a result aboutWQOs ofwhichwe do already
have amechanized constructive proof in Coq.13 Themechanization of ticket entailmentmight
not be completely out of reach.
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