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Abstract. We consider cut-free sequent calculi for a number of deontic
logics from the family of Input/Output logics. These sequent calculi
provide a correspondence to the flat fragment of certain conditional logics.
Two of the introduced calculi are non-standard in that they include
non-derivability statements, and hence are interesting also from a purely
technical perspective. We further modularise the calculi in an extended
sequent framework. Proof search in the extended calculi is implemented
in Prolog, providing seemingly the first automated reasoning systems for
some of the considered logics.

Keywords: I/O Logic · Conditional Logic · Deontic Logic · Sequent
systems

1 Introduction

A formalism which has recently gained interest in the field of deontic logic is
that of Input/Output logics [16,23]. Here, conditional obligations such as “If
there is a dog, then there must be a fence” are treated as Input-Output pairs,
intuitively converting their input (the conditions under which the conditional
obligation holds, e.g., “there is a dog”) into their output (what is obligatory
under these conditions, e.g., “there is a fence”). In the Input/Output approach
this conversion mechanism, called detachment, is taken as the core mechanism of
deontic logics, and is used to analyse phenomena and problems of deontic logic
including, e.g., Contrary-to-Duty reasoning (reasoning with and about violated
norms) or deontic paradoxa and dilemmas. In this framework, an Input/Output
logic is viewed as a “transformation engine”, which converts an input, i.e., a
state description, into an output, i.e., what should be the case, using a set of
conditional obligations in the form of Input/Output pairs. As a main aspect of
the Input/Output framework, the Input/Output pairs are given by a meta-level
connective instead of an object-level connective as in, e.g., dyadic deontic logic
or conditional logic. Different Input/Output logics are then obtained (on the
syntactical side) by varying the mechanisms of obtaining new input-output pairs
from a given set of these pairs.
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Urban Innovative Actions project
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While the more theoretical side of the basic Input/Output logics by now is
rather well understood, their automated reasoning side has not yet been fully
explored: The only more practical approaches in this direction so far seem to be
the semantical embedding of some systems of Input/Output logic into Higher-
Order logic enabling automation for these systems in [3] and a goal-directed
method for deciding certain Input/Output logics introduced in [29]. However, the
embedding into Higher-Order Logic makes use of an embedding of Input/Output
logics into certain modal logics, and the goal-directed decision procedures are
based heavily on the semantic characterisation of the logics.

Here we take a more proof-theoretic approach and exploit a strong similarity
to the KLM framework for nonmonotonic reasoning [10]. Analogously to the
notion of an Input/Output pair the KLM framework is based on a meta-level
connective for nonmonotonic inference, written Γ |∼ A and interpreted as “Γ
nonmonotonically entails A”. Different systems then are given by different rules
for this connective. However, it has been observed already in op. cit., that this
meta-level connective corresponds to a dyadic object-level connective, specifically
that of conditional logics, and that different systems in the KLM framework
therefore correspond to the flat (i.e., unnested) fragment of various conditional
logics. This of course opens up the possibility of transferring certain results from
one framework to the other. In addition, the formulation in terms of an object-
level connective facilitates the application of syntactic methods, in particular the
construction and use of sequent systems.

In the present paper we will use the same idea to obtain axiomatisations for the
logical connective corresponding to input/output pairs in certain Input/Output
logics. With the aim of obtaining automated reasoning procedures we consider
corresponding sequent systems for these logics. These correspondences are also
interesting in their own right, because they yield a representation of certain
Input/Output logics in conditional logics, resulting in an alternative semantics.
Two of the sequent systems are in addition non-standard in that they mention
underivability in the premisses, stemming from the fact that the corresponding
Input/Output logics contain consistency constraints in the formulation of the
rules. With respect to automated reasoning, we then consider a modification of
the sequent systems which facilitates a prototype implementation.

Of course the idea of turning Input/Output pairs into logical connectives
goes against the original idea of treating conditional obligations expressly at the
meta-level [16]. While there are certainly good philosophical arguments to do so,
here we do not take a stance on this matter and treat the connectives from a
purely syntactical point of view.

2 Input/Output Logics And Their Sequent Calculi

We briefly recall the relevant Input/Output logics, henceforth also simply I/O
logics, and then consider their sequent calculi. The reader is referred to [16,23]
for more details on Input/Output logics including the semantics, motivation and
philosophical discussion. We defer the technical results about the calculi to Sec. 3.
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(A,X) B ` A
(B,X)

SI
(A,X) X ` Y Y ` X

(A, Y )
OEQ

(A,X) X ` Y
(A, Y )

WO

(>,>)
>

(A,A)
ID

(A,X) (A ∧X,Y )

(A, Y )
CT

(A,X) (A, Y )

(A,X ∧ Y )
AND

(A,X) (A, Y ) A ∧X ∧ Y consistent

(A,X ∧ Y )
RAND

(A,X) (A ∧X,Y )

(A,X ∧ Y )
ACT

(A,X) (A ∧X,Y ) A ∧X ∧ Y consistent

(A,X ∧ Y )
RACT

Fig. 1. I/O logic rules

The set Prop of propositional formulae is given as usual by the grammar
Prop ::= V | ⊥ | > | ¬Prop | Prop∧Prop | Prop∨Prop | Prop→ Prop where V is a
countable infinite set of propositional variables. We assume the usual conventions
about binding strength of the operators, i.e., ¬ binds stronger than ∧ binds
stronger than ∨ binds stronger than →.

Definition 1. An Input/Output pair, short I/O pair is a tuple (A,X), where
A,X ∈ Prop are propositional formulae.

In the following we only consider mainly unconstrained I/O logics (see, e.g., [23]
for the details). From the purely syntactic point of view, these logics then are
given by different rules for obtaining new I/O pairs from a given set of I/O
pairs, captured in the form of different derivability relations. Here we consider
the following I/O logics: simple-minded output deriv1, simple-minded throughput
deriv+1 , reusable output deriv3, and reusable throughput deriv+3 from [16], simple-
minded output without weakening (or aggregative simple-minded output) ag der1
and reusable output without weakening (or aggregative reusable output) ag der3
from [30,26], and simple minded output with consistency check c ag der1 as well
as basic output with consistency check c ag der3 from [24,25].

The rules are given in Fig. 1. Rule SI (Strengthening of the Input) corresponds
to downwards monotonicity in the first argument of the pair operator, while WO
(Weakening of the Output) corresponds to upwards monotonicity in the second
argument. Rule OEQ (Output Equivalence) is the weaker version of the latter
stating congruence in the second argument. Rules > (Tautology) and ID (Identity)
are self-explanatory. Rule AND and its weaker version RAND (Restricted AND)
state that conjunction distributes over the second argument, while the rules CT
(Cumulative Transitivity), ACT (Aggregative Cumulative Transitivity) and RACT
(Restricted Aggregative Cumulative Transitivity) state various weaker versions
of transitivity. Note that since there is no nesting of the I/O pair operator,
the entailment relation in the rules SI,OEQ and WO as well as the consistency
requirement in the rules RAND and RACT range over classical propositional logic.
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Logic SI OEQ WO > ID RAND AND RACT ACT CT Reference

deriv1 X (X) X X (X) X [16]
deriv+1 X (X) X (X) X (X) X [16]
deriv3 X (X) X X (X) X (X) (X) X [16]
deriv+3 X (X) X (X) X (X) X (X) (X) X [16]
ag der1 X X (X) X D1 in [26]
ag der3 X X (X) X (X) X D3 in [26]
c ag der1 X X X D1 in [25]
c ag der3 X X (X) X D3 in [25]

Fig. 2. The different I/O logics. Checkmarks in parentheses are implied.

Γ,⊥ ⇒ ∆
⊥L

Γ ⇒ >,∆ >R
Γ, p⇒ p,∆

init
Γ ⇒ A,∆

Γ,¬A⇒ ∆
¬L

Γ,A⇒ ∆

Γ ⇒ ¬A,∆
¬R

Γ,B ⇒ ∆ Γ ⇒ A,∆

Γ,A→ B ⇒ ∆
→L

Γ,A⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨B ⇒ ∆
∨L

Γ,A,B ⇒ ∆

Γ,A ∧B ⇒ ∆
∧L

Γ,A⇒ B,∆

Γ ⇒ A→ B,∆
→R

Γ ⇒ A,B,∆

Γ ⇒ A ∨B,∆
∨R

Γ ⇒ A,∆ Γ ⇒ B,∆

Γ ⇒ A ∧B,∆
∧R

Fig. 3. The classical propositional sequent rules

Definition 2. Let G be a set of I/O pairs, and let L be one of deriv1, deriv+1 ,
deriv3, deriv+3 , ag der1, ag der3. An I/O pair (A,X) is derivable from G in
L, written G `L (A,X), iff there is a derivation in L with conclusion (A,X)
whose leaves are I/O pairs from G or entailment or consistency statements
true in classical propositional logic. Here as usual a derivation in L is a finite
labelled directed tree, whose nodes are labelled with I/O pairs or statements about
propositional logic such that the label of each node follows from the labels of
its children using the rules of L as given in Fig. 2. For L one of c ag der1 or
c ag der3 the definition is the same with the additional requirement that for all
leaves (B, Y ) of the derivation we have that B ∧ Y is consistent.

In order to formulate the sequent systems corresponding to such logics we
internalise the I/O pairs using a corresponding logical connective > as follows.

Definition 3. The set F of formulae in the internalised I/O language is given
by F ::= V | ⊥ | > | F ∧ F | F ∨ F | F → F | F > F . A sequent in the
internalised I/O language is a tuple of multisets of formulae from F , written
Γ ⇒ ∆.

We assume that all propositional connectives bind stronger than >. The
sequent systems considered below all contain the standard G3p rules for classical
propositional logic given in Fig. 3 (see also [32]).

Converting the rules for the I/O pairs into sequent rules by simply moving
the I/O pairs from the premisses to the antecedent of the conclusion yields the
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B ⇒ A
(A > X)⇒ (B > X)

(SI)
X ⇒ Y Y ⇒ X

(A > X)⇒ (A > Y )
(OEQ)

X ⇒ Y
(A > X)⇒ (A > Y )

(WO)

(>) :⇒ > > > (ID) :⇒ (A > A) (CT) : (A > X) ∧ (A ∧X > Y )⇒ (A > Y )

(AND) : (A > X) ∧ (A > Y )⇒ (A > X ∧ Y )

(ACT) : (A > X) ∧ (A ∧X > Y )⇒ (A > X ∧ Y )

A ∧X ∧ Y consistent
(A > X) ∧ (A > Y )⇒ (A > X ∧ Y )

(RAND)

A ∧X ∧ Y consistent
(A > X) ∧ (A ∧X > Y )⇒ (A > X ∧ Y )

(RACT)

Fig. 4. Axioms and rules corresponding to the I/O rules

rules and axiomatic sequents in Fig. 4. Of course, replacing the sequent arrow in
these with an implication yields Hilbert-style axiomatisations. Using the methods
of [27,12,11] to absorb cuts between the conclusions of these rules into the rule
set yields the rules in Fig. 5. To save space in the presentation of the rules we
abuse notation and use set notation in the premisses. E.g., instead of writing

C ⇒ A1 C,B1 ⇒ A2 C,B1, B2 ⇒ A3 B1, B2, B3 ⇒ D

(A1 > B1), (A2 > B2), (A3 > B3)⇒ (C > D)
R3

we write

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ 3} B1, B2, B3 ⇒ D

(A1 > B1), (A2 > B2), (A3 > B3)⇒ (C > D)
R3

.

Note also that the systems include the special case of the rules for n = 0, i.e.,
the rules

⇒ D
Γ ⇒ (C > D), ∆

CC0
C ⇒ D

Γ ⇒ (C > D), ∆
CCI0

which are the same as R0 and RI0, respectively. Most significantly, the rules
c ag CCn and c ag Rn include underivability statements of the form 6` Γ ⇒ ∆ in
the premisses. In order to capture this we use the following notion of derivability:

Definition 4. A proto-derivation for a sequent Γ ⇒ ∆ in GL is a finite directed
labelled tree, where the root is labelled with Γ ⇒ ∆ and:

– each internal node is labelled with a sequent, each leaf is labelled with a
sequent or an underivability statement of the form 6` Σ ⇒ Π

– whenever a node has a standard sequent as its label, then that sequent follows
from the labels of the node’s children using the rules of GL

The depth of a proto-derivation is the depth of the underlying tree. A proto-
derivation in GL is valid if for every underivability statement 6` Σ ⇒ Π there is
no valid proto-derivation of Σ ⇒ Π in GL. A sequent is derivable in GL, written
`GL Γ ⇒ ∆ if there is a valid proto-derivation for it in GL.
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{C ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
CCn

{C ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn, C ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
CCIn

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
Rn

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn, C ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
RIn

{C ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
ag CCn

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
ag Rn

{C ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n}
B1, . . . , Bn ⇒ D 6` C,D ⇒

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
c ag CCn

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n}
B1, . . . , Bn ⇒ D 6` C,D ⇒

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D),∆
c ag Rn

Gderiv1 : {CCn : n ≥ 0} Gderiv3 : {Rn : n ≥ 0}
G

deriv+1
: {CCIn : n ≥ 0} G

deriv+3
: {RIn : n ≥ 0}

Gag der1 : {ag CCn : n ≥ 1} Gag der3 : {ag Rn : n ≥ 1}
Gc ag der1 : {c ag CCn : n ≥ 1} Gc ag der3 : {c ag Rn : n ≥ 1}

Fig. 5. Sequent rules for I/O logics

Of course, since the definition of a valid proto-derivation makes use of the
very same notion, we need to show that the concept is well defined.

Lemma 5. Every proto-derivation in GL is valid or not valid, but not both.

Proof. By induction on the modal rank of its conclusion Γ ⇒ ∆, i.e., the maximal
nesting depth of the modal operator > in a formula in the sequent. All rules of
GL have the subformula property, i.e., every formula occurring in its premisses is
a subformula of a formula occurring in its conclusion. Hence, if the modal rank
of the conclusion of a proto-derivation is 0, then only propositional rules occur
in it, and hence no underivability statements. Thus it is automatically valid.

Suppose that the modal rank of the conclusion of a proto-derivation D is
n+1. Then again by the subformula property and the fact that the underivability
statements in the rules have strictly lower modal rank than their conclusions
we obtain that all the underivability statements in D have modal rank at most
n. By induction hypothesis every proto-derivation for the sequent in such an
underivability statement is either valid or not valid, but not both. Thus for every
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sequent occurring in such an underivability statement either there is a valid
proto-derivation or there is not, but not both. Hence the proto-derivation D is
either valid or not, but not both. ut

Since this definition of derivability is rather non-standard, some remarks are
in order. First for the calculi without underivability statements the definition
collapses to the standard notion of derivability in sequent systems. Hence the
reader not interested in the calculi for c ag der1 and c ag der3 may mentally
substitute the standard definition for the rest of the paper.

We could avoid underivability statements by considering an antisequent
calculus for underivability along the lines of [4]. While for propositional rules this
works well due to invertibility, for the modal rules we would need rules stating
that for every modal rule which could have been used to derive a sequent at
least one of its premisses is underivable. Since every ordered subset of modal
formulae in a sequent corresponds to such a possible rule application, the number
of premisses for the modal antisequent rules would become rather large. For the
sake of a more compact presentation we therefore keep to the current formulation.

3 Technical Results And Correspondence

We now consider the properties of our calculi, starting with a number of standard
results leading up to cut elimination and the correspondence to the I/O logics.

Lemma 6 (Generalised Initial Sequents). Let L be one of the logics without
consistency check. Then `GL Γ,A⇒ A,∆. If L is one of c ag der1 and c ag der3
then `GL Γ,A⇒ A,∆ for purely propositional A.

Proof. By induction on the complexity of the formula A. In case A is of the
form C > D we use the modal rule with exactly one principal formula on the
left hand side, e.g., in the calculus Gderiv+3

we have an application of the rule RI1
with conclusion (C > D)⇒ (C > D) and premisses C ⇒ C and D,C ⇒ D. The
premisses are derivable by induction hypothesis. ut

Note that derivability of the generalised initial sequents does not hold un-
restrictedly for the logics c ag der1 and c ag der3, because we cannot derive
sequents (A > B) ⇒ (A > B) where A and B are inconsistent. This includes
examples such as (⊥ > ⊥) ⇒ (⊥ > ⊥) or (A > ¬A) ⇒ (A > ¬A). For the
purpose of showing equivalence to I/O logics the form restricted to propositional
formulae is enough, though, since I/O logics do not contain nested I/O pairs.

Lemma 7 (Invertibility of the propositional rules). Let L be one of the
logics considered. Then the propositional rules are depth-preserving invertible,
i.e., whenever their conclusion is derivable with a proto-derivation of depth n,
then so are their premisses.

Proof. By induction on the depth of the proto-derivation, using the fact that
the formulae with a propositional connective at the top level occur in the modal
rules only as context formulae. ut
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Lemma 8 (Admissibility of the structural rules). Let L be one of the logics
considered. Then the structural rules of weakening, left contraction and right
contraction below are depth-preserving admissible, i.e, whenever their premiss is
derivable in depth n, then so is their conclusion.

Γ ⇒ ∆
Σ,Γ ⇒ ∆,Π

W
Γ,A,A⇒ ∆

Γ,A⇒ ∆
ICL

Γ ⇒ A,A,∆

Γ ⇒ A,∆
ICR

Proof. By induction on the depth of the proto-derivation. In case the last applied
rule is a propositional rule with the contracted formula principal, as usual we
use depth-preserving invertibility of the propositional rules (Lem. 7). In case the
last applied rule is a modal rule with both instances of the contracted formula
principal, we apply contraction to the premisses followed by the version of the
same modal rule with one principal formula less. Note that the modal rules only
have one principal formula on the right hand side, hence we do not need to
consider contractions between principal formulae on the right and avoid having
to deal with contractions in the underivability statements. ut

Theorem 9 (Cut Admissibility). The cut rule is admissible in GL, i.e.,

if `GL Γ ⇒ ∆,A and `GL A,Σ ⇒ Π then `GL Γ,Σ ⇒ ∆,Π .

Proof. As usual by double induction on the complexity of the cut formula A and
the sum of the depths of the valid proto-derivations D1 of Γ ⇒ ∆,A and D2 of
A,Σ ⇒ Π, see, e.g., [32]. The case where the complexity of A is 1, i.e., A is a
propositional variable is standard, permuting the cut over the last applied rule in
D1 using the induction hypothesis until that rule is init, then absorbing it into the
last applied rule in D2. In case the complexity of A is n+ 1 we distinguish cases
according to the topmost connective of A. In the propositional case we follow
the standard approach and use invertibility of the propositional rules (Lem. 7)
to reduce the cut to cuts on formulae of smaller complexity, potentially followed
by admissibility of Contraction (Lem. 8) to eliminate duplicate formulae.

The interesting case is where A is of the form (C > D). Again we permute
the cut over the last applied rule in D1 until the cut formula is principal there
using the inner induction hypothesis, then do the same with D2. What is left
to check is that cuts between the principal formulae of two modal rules can
be reduced to cuts of smaller complexity. We only consider a complicated case
here, the remaining cases are similar but simpler. The full list can be found in
Appendix A.1.

Suppose that L is c ag der3, and the last applied rules were c ag Rn:

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ n} {D ⇒ Bi : i ≤ n} B1, . . . , Bn ⇒ D 6` C,D ⇒
(A1 > B1), . . . , (An > Bn)⇒ (C > D)
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and c ag Rm:

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
G,F1, . . . , Fk−1 ⇒ C
{G,F1, . . . , Fk−1, D, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k 6= i ≤ m}
H ⇒ D
F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H
6` G,H ⇒

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Applying the induction hypothesis to cut on the formulae C and D we obtain:

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
{G,F1, . . . , Fk−1, B1, . . . , Bi−1 ⇒ Ai : i ≤ n}
{G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k 6= i ≤ m}
{H ⇒ Bi : i ≤ n}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H
6` G,H ⇒

and applying c ag Rn+m−1 yields the desired (E1 > F1), . . . , (Ek−1 > Fk−1),
(A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . (Em > Fm)⇒ (G > H). ut

As usual, one of the main consequences of cut admissibilty is consistency:

Corollary 10 (Consistency). The calculi are consistent, i.e., 6`GL ⇒ ⊥.

Proof. All rules have the subformula property, and no rule introduces ⊥. ut

Lemma 11 (Derivability of the axioms). Let L be one of the considered
logics. Then the axioms and rules of Fig. 4 for the corresponding I/O rules are
derivable in GL, restricted to non-nested formulae for c ag der1 and c ag der3.

Proof. The rules (SI) and (WO) are special cases of the rules CC1, CCI1, R1

and RI1 respectively. The rule (OEQ) is a special case of ag CC1 and ag R1. For
(RACT) we have for purely propositional formulae A,B,C:

A⇒ A A,B ⇒ A ∧B B ∧ C ⇒ B B ∧ C ⇒ C B,C ⇒ B ∧ C 6` A,B ∧ C ⇒
(A > B), (A ∧B > C)⇒ (A > B ∧ C)

c ag R2

(A > B) ∧ (A ∧B > C)⇒ (A > B ∧ C)
∧L

where the underivability premiss is the premiss of (RACT) and the other premisses
are derivable using Lem. 6 since A,B,C are purely propositional. The case of
(RAND) is similar, using c ag CC1. Deriving the axiomatic sequents is relatively
straightforward using Lem. 6. ut

Using cut admissibility we can finally show that the sequent systems indeed
capture the corresponding I/O logics:
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Theorem 12 (Equivalence). Let L be one of the logics considered here. For
every set {(A1, X1), . . . , (An, Xn)} of I/O pairs we have

{(A1, X1), . . . , (An, Xn)} `L(A,X) iff

`GL (A1 > X1), . . . , (An > Xn)⇒ (A > X) .

Proof. We use the fact that the construction of an I/O logic derivation corresponds
to the construction of a sequent rules for > using cuts.

The left to right direction is shown by induction on the depth of the I/O
derivation, i.e., the maximal length of a branch in that derivation. We first consider
an example of an I/O rule corresponding to an axiom from Fig. 4. Suppose that
{(A1, X1), . . . , (An, Xn)} `L (A,X) and that the last applied rule was CT. Then
there are P1,P2 with P1 ∪ P2 = {(A1, X1), . . . , (An, Xn)} and a formula Y such
that P1 `L (A, Y ) and P2 `L (A ∧ Y,X). Hence by induction hypothesis for
the sets P>

1 and P>
2 of conditional formulae corresponding to the tuples in P1

and P2 respectively we have `GL P>
1 ⇒ (A > Y ) and `GL P>

2 ⇒ (A ∧ Y > X).
By Lem. 11 we have `GL (A > Y ) ∧ (A ∧ Y > X) ⇒ (A > X), and hence by
invertibility of the propositional rules also `GL (A > Y ), (A∧Y > X)⇒ (A > X).
Applying cut admissibility (Thm. 9) twice we have `GL P>

1 ,P>
2 ⇒ (A > X), and

admissibility of contraction (Lem. 8) yields the result. The cases for the other
I/O rules corresponding to axiomatic sequents are similar.

As an example of an I/O rule corresponding to a rule from Fig. 4, assume
that the last applied I/O rule was WO. Thus there is an I/O pair (A, Y ) with
{(A1, X1), . . . , (An, Xn)} `L (A, Y ) and Y ` X. By induction hypothesis we
have `GL (A1 > X1), . . . , (An > Xn) ⇒ (A > Y ). Since Y ` X propositionally
and the propositional rules of GL are complete for classical propositional logic
we also have `GL Y ⇒ X, and Lem. 11 yields `GL (A > Y ) ⇒ (A > X). Now
admissibility of the cut rule gives the result.

For the right to left direction we use an induction on n, i.e., the number of
I/O formulae on the left hand side of the sequent. For more details, see also
Appendix A.2. If `GL (A1 > X1), . . . , (An > Xn) ⇒ (A > X), then the last
applied rule must be a modal rule. Assume w.l.o.g. that all the (Ai > Xi) are
principal formulae (otherwise apply the induction hypothesis on the principal
formulae). The base cases are those for 0 ≤ n ≤ 2. In each case we distinguish
subcases according to which rule was applied. We further use the fact that for
propositional formulae we have A⇒ B iff A ` B.

Case n = 0: The last applied rule was one of CC0,CCI0,R0,RI0. For an
application of CC0 or R0 with premiss ⇒ D and conclusion ⇒ (C > D) we
first obtain (>,>) from >, which together with C ` > yields (C,>) by SI. This
together with > ` D yields (C,D) by WO. The case of CCI0 or RI0 is even simpler,
using ID and SI.
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Case n = 1: The rules CC1 and R1 are straightforward using SI and WO. For
the rule CCI1 (and analogously for RI1) we have:

C ⇒ A B,C ⇒ D

(A > B)⇒ (C > D)
CCI1  

(A,B) C ` A
(C,B)

SI
(C > C)

ID

(C,B ∧ C)
AND

B ∧ C ` D
(C,D)

WO

For ag CC1 or ag R1 with premisses C ⇒ A as well as D ⇒ B and B ⇒ D and
conclusion (A > B) ⇒ (C > D) we obtain (C,B) from (A,B) and C ` A by
SI. Together with D ` B and B ` D this yields (C,D) by OEQ. For c ag CC1

and c ag R1 we use the same derivation as for ag CC1. However, to ensure that
we obtain a derivation valid in c ag der1 (resp. c ag der3) we need to check that
none of the I/O pairs used as premisses is contradictory, i.e., specifically that
6` A ∧ B → ⊥. Assume that ` A ∧ B → ⊥. Then since C ` A we also have
` C ∧B → ⊥. Since moreover D ` B and B ` D we then obtain ` C ∧D → ⊥,
in contradiction to 6` C,D ⇒ . Thus 6` A ∧B → ⊥.

Case n = 2: Rule CC2 is straightforward using SI followed by AND and WO.
For CCI2 we also need to use ID and AND before WO. For R2 we use SI followed
by CT, AND and finally WO. For RI2 we do the same but again insert ID and
AND before the final application of WO. For ag CC2, suppose we have:

C ⇒ A1 C ⇒ A2 D ⇒ B1 D ⇒ B2 B1, B2 ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)
ag CC2

Applying SI on (A1, B1) and C ⇒ A1 yields (C,B1) and similarly SI on (A2, B2)
and C ⇒ A2 yields (C,B2). An application of AND then gives (C,B1 ∧ B2),
which together with D ` B1 ∧B2 and B1 ∧B2 ` D by OEQ yields (C,D). The
case of ag R2 is similar, using ACT instead of AND. For c ag CC2 we use the
same derivation as for ag CC2. Additionally, we have to check that none of the
I/O pairs occurring as assumptions of the derivation is inconsistent, i.e., that
6` A1 ∧B1 → ⊥ and 6` A2 ∧B2 → ⊥. From 6` C,D ⇒ we obtain 6` C ∧D → ⊥.
Together with ` C ↔ B1 ∧ B2 this yields 6` C ∧ B1 ∧ B2 → ⊥. Since C ` A1

and C ` A2 this yields 6` A1 ∧B1 ∧B2 → ⊥ and 6` A2 ∧B1 ∧B2 → ⊥, and thus
finally 6` A1 ∧B1 → ⊥ and 6` A2 ∧B2 → ⊥. The case of c ag R2 is analogous.

Case n = m + 2 with m ≥ 1: We use essentially the method of proving
soundness of “cuts between rules” from [11, Lem.2.4.5], using that the rules
are constructed from smaller components via closure under cuts. I.e., for a
rule with conclusion (A1 > B1), . . . , (Am+2 > Bm+2) ⇒ (C > D) we con-
struct a formula (E > F ) such that both (A1 > B1), . . . , (Am > Bm), (E >
F ) ⇒ (C > D) and (Am+1 > Bm+1), (Am+2 > Bm+2) ⇒ (E > F ) are
derivable given the original premisses. Then by induction hypothesis we obtain
{(A1, B1), . . . , (Am, Bm), (E,F )} `L (C,D) and {(Am+1, Bm+1), (Am+2, Bm+2)}
`L (E,F ) Putting these together we then have {(A1, B1), . . . , (Am+2, Bm+2)} `L
(C,D). For space reasons we only give the formula (E,F ), assuming the rules as
in Fig. 5 with conclusion (A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D).
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For CCm+2 we set (E > F ) = (C > Bm+1 ∧ Bm+2). For CCIm+2 we set
(E > F ) = (C > C∧Bm+1∧Bm+2). For Rm+2 we use (E > F ) = (C∧

∧
i≤mBi >

Bm+1∧Bm=2), and for RIm+2 we set (E > F ) = (C∧
∧

i≤mBi > C∧
∧

i≤m+2Bi).
For ag CCm+2 and c ag CCm+2 we use (E > F ) = (C > (Bm+1∧Bm+2)∨D). In
the case of c ag CCm+2 we additionally need to show the underivability premisses,
i.e., 6` C, (Bm+2∧Bm+2)∨D ⇒ . This follows by invertibility of the propositional
rules from 6` C,D ⇒ . Finally, for ag Rm+2 and c ag Rm+2 we set (E > F ) =
(C∧

∧
i≤mBi > (Bm+1∧Bm+2)∨D). In the case of c ag Rm+2 again we also need

to show the underivability premiss, i.e., 6` C ∧
∧

i≤mBi, (Bm+1 ∧Bm+2) ∨D ⇒ .
Assume otherwise. Then by invertibility of the propositional rules we also have
` C,B1, . . . , Bm+2 ⇒ . Together with ` D ⇒ Bi for i ≤ m+ 2 and admissibility
of cut and contraction this yields ` C,D ⇒ in contradiction to the original
premiss 6` C,D ⇒ . ut

One benefit of the equivalence is that now we have a formal correspondence
between certain I/O logics and the conditional logics or dyadic deontic logics
obtained by adding (the Hilbert-style versions of) the axioms and rules of Fig. 4
to standard axioms for classical propositional logic:

Corollary 13. For every finite set {(Ai, Xi) : i ≤ n} of I/O pairs we have
{(Ai, Xi) : i ≤ n} `L (A,X) iff

∧
i≤n(Ai > Xi)→ (A > X) is a theorem of the

conditional logic given by the corresponding axioms and rules of Fig. 4.

Proof. The proof of Thm. 12 also shows that the sequent calculi are sound and
complete for the logics given by the axioms and rules of Fig. 4 and the cut rule,
and thus also the corresponding Hilbert-style systems. In particular, soundness is
seen by converting the sequent rules into I/O derivations, then converting these
into derivations using the axioms and rules of Fig. 4. ut

This opens up new possibilities for comparing I/O logics to other conditional
or dyadic deontic logics by investigating them in the same framework of Hilbert-
or sequent systems, or by giving them semantics along the lines of [5]. As
an example, Lewis’ counterfactual logic V from [15] in the language with the
dyadic comparative plausibility operator 4 has been equipped with a cut-free
sequent system in [13]. The sequent rules for the operator 4 are given by the set
{Rn,m : n ≥ 1,m ≥ 0} for the rules

{Bk ⇒ A1, . . . , An, D1, . . . , Dm : k ≤ n} {Ck ⇒ A1, . . . , An, D1, . . . , Dk−1 : k ≤ m}
Γ, (C1 4 D1), . . . , (Cm 4 Dm)⇒ (A1 4 B1), . . . , (An 4 Bn), ∆

Rn,m

Setting n = 1 we note that the structure of the premisses is the same as that of
the rule RIm, only with flipped right and left hand sides. Thus we obtain:

Theorem 14. We have {(A1, X1), . . . , (An, Xn)} `deriv+3 (A,X) if and only if∧
i≤n(¬Ai 4 ¬Xi)→ (¬A 4 ¬X) is a theorem of V.

Proof. Applications of the rule RIm are simulated in the system for V by negation
rules followed by R1,n. Vice versa, if (¬A1 4 ¬X1), . . . , (¬An 4 Xn)⇒ (¬A 4
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¬X) is derivable in the system for V, then w.l.o.g. it is the conclusion of an
application of R1,n. Since the premisses are purely propositional, they are derivable
in Gderiv+3

. Using invertibility of the propositional rules we remove the negations,

and then apply the rule RIn. The full equivalence then follows from Thm. 12. ut

Thus the I/O logic deriv+3 can be seen as the flat modal Horn fragment of
conditional logic V. This then yields an alternative semantics for deriv+3 in terms
of the sphere models of [15] by simply spelling out the truth conditions for a
formula (¬A 4 ¬X).

4 Theorem Proving

One of the immediate benefits of the cut-free sequent calculi introduced above is
that we immediately obtain an alternative decidability and complexity proof:

Theorem 15 (Decidability and Complexity). Derivability in all the con-
sidered sequent systems is decidable in polynomial space.

Proof. By a standard backwards proof search argument, e.g., the generic com-
plexity result in [11, Thm. 2.7.8]. For the calculi with underivability statement
we just need to flip the results for these statements. ut

Since I/O pairs do not contain nested operators, the complexity for solving
the entailment problem in I/O logics using our sequent calculi drops to the class
ΠP

3 of the polynomial hierarchy. However, since this is still above the optimal
coNP-bounds following from [31] we do not consider this in detail here.

In terms of implementing our calculi, one suboptimal factor is that the number
of principal formulae in the conclusion is unbounded, and that in contrast to,
e.g., the rules for modal logic K the order of the principal formulae on the left
hand side is crucial. We can obtain a more modular and arguably more elegant
formulation by considering sequents with an additional block, in line with the
idea of modularisation of sequent calculi in [14] and inspired by the blocks for
nested sequent calculi in [1,19,8]. The main idea is to build up the sequent rules
one formula at a time, starting with the principal formula on the right. The block
is used to store the information during the building up of the rule.

Definition 16. An extended sequent is a standard sequent possibly extended
with a block [A > B : Ω] containing a formula A > B and a multiset Ω of
formulae. An extended sequent with a block is written Γ ⇒ ∆, [A > B : Ω].

The modal extended sequent rules then are given in Fig. 6, the modal part of
the extended sequent calculi EGL is given in Fig. 7. In addition, all the calculi
contain the standard propositional rules of Fig. 3. Note that this implies that
the propositional rules can only be applied to standard sequents, i.e., sequents
which do not contain a block. This is a design choice based purely on convenience,
because it automatically separates the propositional and modal phases of a
derivation, hence eliminating the need for a permutation-of-rules argument as
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Γ ⇒ ∆, [C > D : ]

Γ ⇒ ∆,C > D
>R

Ω ⇒ D
Γ ⇒ ∆, [C > D : Ω]

jump
Ω,C ⇒ D

Γ ⇒ ∆, [C > D : Ω]
jump+

C ⇒ A Γ ⇒ ∆, [C > D : Ω,B]

Γ,A > B ⇒ ∆, [C > D : Ω]
>L

C,Ω ⇒ A Γ ⇒ ∆, [C > D : Ω,B]

Γ,A > B ⇒ ∆, [C > D : Ω]
>3

L

C ⇒ A D ⇒ B Γ ⇒ ∆, [C > D : Ω,B]

Γ,A > B ⇒ ∆, [C > D : Ω]
>ag

L

Ω,B ⇒ D

Γ ⇒ ∆, [C > D : Ω,B]
jumpag

C,Ω ⇒ A D ⇒ B Γ ⇒ ∆, [C > D : Ω,B]

Γ,A > B ⇒ ∆, [C > D : Ω]
>ag 3

L

Ω,B ⇒ D 6` C,D ⇒
Γ ⇒ ∆, [C > D : Ω,B]

jumpc ag

Fig. 6. The extended sequent rules for internalised I/O logics

>R >L >3
L >ag

L >ag 3
L jump jump+ jumpag jumpc ag

EGderiv1 X X X
EG

deriv+1
X X X

EGderiv3 X X X
EG

deriv+3
X X X

EGag der1 X X X
EGag der3 X X X
EGc ag der1 X X X
EGc ag der3 X X X

Fig. 7. The exended sequent calculi

in [14, Thm.4.3] when showing equivalence of the calculi. Note also the subtle
difference between the rules jump and jumpag: In the latter the left hand side of
the premiss contains a formula B and hence cannot be empty. This ensures that
the rule jumpag can not be applied immediately above the rule >R, capturing
the fact that aggregative logics do not satisfy the axiom > of Fig. 4 and hence
their sequent rules from Fig. 5 have a non-empty left hand side in the conclusion.
The same mechanism holds for the consistent version jumpc ag of the rule.

Proposition 17. The standard sequent calculi and the extended sequent calculi
are equivalent, i.e., a standard sequent is derivable in GL if and only if it is
derivable in EGL.

Proof. To see that every sequent derivable in the standard sequent calculi is also
derivable in the corresponding extended sequent calculi it is enough to show
that the standard modal rules are derivable rules in the extended sequent calculi.
We do this by first applying (bottom-up) the right rule for >, followed by a
number of applications of the left rule for > and finally an application of the
corresponding jump rule. E.g., an application

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), (A2 > B2), . . . , (An > Bn)⇒ (C > D), ∆
Rn



From I/O Logics to Conditional Logics via Sequents – with Provers 15

C ⇒ A1

C,B1 ⇒ A2

C,B1, . . . , Bn−1 ⇒ An

B1, . . . , Bn ⇒ D

Γ ⇒ ∆, [C > D : B1, . . . , Bn]
jump

Γ, (An > Bn)⇒ ∆, [(C > D) : B1, . . . , Bn−1]
>3

L

....
Γ, (A3 > B3), . . . , (An > Bn)⇒ ∆, [C > D : B1, B2]

Γ, (A2 > B2), . . . , (An > Bn)⇒ ∆, [(C > D) : B1]
>3

L

Γ, (A1 > B1), (A2 > B2), . . . , (An > Bn)⇒ ∆, [(C > D) : ]
>3

L

Γ, (A1 > B1), (A2 > B2), . . . , (An > Bn)⇒ (C > D),∆
>R

Fig. 8. The derivation of the sequent rule Rn

of the rule Rn is simulated by the derivation in Fig. 8. The other cases are similar.
For the other direction, due to the fact that an extended sequent contains at most
one block and the shape of the rules, the modal rules are applied only in blocks
with an application of >R at the bottom, followed by a number of applications
of the appropriate version of the >L rule and finally a single application of the
appropriate version of the jump rule. Such blocks straightforwardly correspond
to an application of the respective standard sequent rule, essentially reversing
the simulation of that rule considered above. ut

A prototype implementation of proof search in the extended sequent calculi in
SWI-Prolog1 is available as IOCondProver both as a web interface2 and as source
code on GitHub3. The implementation uses the Lean methodology [2] to delegate
proof search to Prolog’s backtracking mechanism. In case proof search is successful
it outputs a LaTeX file containing the derivation, which is automatically rendered
to a PDF file in the web interface.

While decision procedures for some I/O logics have been given using a
semantic embedding into Higher Order Logic [3], it seems like the only other
approach to automated reasoning for the logics considered here is that of the I/O
Logics Workbench [29], which in its current version captures the logics deriv1,
deriv+1 , deriv3 and deriv+3 but does not seem to capture the logics ag der1, ag der3,
c ag der1 or c ag der3. In contrast to the proof theoretic approach underlying
IOCondProver, the reasoning underlying the I/O Logics Workbench is based on the
semantic characterisation of the I/O logics, using a module for the consequence
relation of an underlying base logic. While this makes the I/O Logics Workbench
easily adaptable to other base logics such as intuitionistic logic, it also makes it
difficult to adapt to the full nested logics characterised by the sequent calculi
considered here. The proof theoretic approach of IOCondProver has the additional
advantage of certificates for derivable sequents in the form of a derivation. Since
IOCondProver is merely a prototype implementation, the focus of this article is on

1 See https://www.swi-prolog.org
2 See http://subsell.logic.at/bprover/iocondprover/
3 See https://github.com/blellmann/iocondprover

https://www.swi-prolog.org
http://subsell.logic.at/bprover/iocondprover/
https://github.com/blellmann/iocondprover
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the theoretical background, and in the absence of meaningful sets of benchmark
formulae for I/O logics we do not consider a performance comparison with the
I/O Logics Workbench here.

There are a number of calculi and theorem provers available both in the KLM-
framework, see, e.g., [6,7,28] as well as in the framework of conditional logics,
e.g., [9,18,20]. However, the vast majority of the available calculi and provers is
based on KLM or conditional logics not corresponding to one of the I/O logics
considered here. An exception is provided by the prover VINTE from [9], which
implements proof search in an internal calculus for conditional logic V. For the
reasons given in the context of the I/O Logics Workbench we also do not consider
performance comparisons with these provers here.

5 Conclusion

In this article we considered cut-free sequent calculi for a number of I/O logics
including ones with consistency constraints. Two of the calculi are non-standard
in that they contain underivability statements in the premisses. The calculi yield
a correspondence of the original I/O logics to certain conditional logics and
hence can form the basis of future comparisons between the two frameworks. We
also considered modified versions of the calculi which are implemented in the
prototype prover IOCondProver. For half of the considered logics this seems to be
the first implementation available.

There are a number of possible directions for future research. The most
obvious one is the extension to further I/O logics, in particular the logics deriv2
and deriv4, which result from deriv1 and deriv3 by adding essentially the axiom
(A > C) ∧ (B > C) → (A ∨ B > C). Since all the axioms for these logics
have modal Horn form a cut-free sequent system immediately follows from the
generic construction of [11, Sec. 4.1, Cor. 4.1.20]. The rules could even be made
comprehensible by using the universal orders of derivation of [16, Sec. 8], since
the order of applying I/O rules corresponds to an order in the construction of the
sequent rules by cuts. Unfortunately Contraction might not be admissible in the
resulting systems, and hence it is not clear that they can be used for automated
reasoning. In contrast, it might be simpler to adapt the calculi considered here
to the operators for permissions considered in [17,21]. Since the logics considered
here are given by axioms in modal Horn form and do not involve disjunction it
might also be straightforward to adapt them to intuitionistic instead of classical
logic as the base logic in the spirit of [22]. Finally, it might be possible to exploit
the sequent formulation in order to give a constructive proof of an analog of the
Craig Interpolation Property for I/O logics, following the methods of [13,11].

Acknowledgements. This article would not have been possible without the many
discussions on the topic with Leon van der Torre. I also thank the reviewers for
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A Appendix

A.1 Additional Details for the Proof of Theorem 9 (Cut
Elimination)

The full list of cases for the modal rules is as follows, distinguishing which logic
we are looking at:

Subcase L = deriv1: If the last rules were CCn and CCm we have the
conclusion

{C ⇒ Ai : i ≤ n} B1, . . . , Bn ⇒ D

(A1 > B1), . . . , (An > Bn)⇒ (C > D)
CCn

and

{G⇒ Ei : k 6= i ≤ m} G⇒ C F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
CCm

Applying cuts on smaller formulae to the premisses yields:

{G⇒ Ei : k 6= i ≤ m} {G⇒ Ai : i ≤ n} F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

Now an application of CCn+m−1 yields the result

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Subcase L = deriv+1 : If the last rules were CCIn and CCIm we have

{C ⇒ Ai : i ≤ n} C,B1, . . . , Bn ⇒ D

(A1 > B1), . . . , (An > Bn)⇒ (C > D)
CCIn

and

{G⇒ Ei : k 6= i ≤ m} G⇒ C G,F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
CCIm

Applying cuts on smaller formulae to the premisses yields:

{G⇒ Ei : k 6= i ≤ m}
{G⇒ Ai : i ≤ n}
G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

Now an application of CCIn+m−1 yields the result

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Subcase L = deriv3: Suppose we have an application

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ n} B1, . . . , Bn ⇒ D

(A1 > B1), . . . , (An > Bn)⇒ (C > D)
Rn
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and

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
G,F1, . . . , Fk−1 ⇒ C
{G,F1, . . . , Fk−1, D, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
Rm

Applying cut of smaller complexity to the premisses yields

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
{G,F1, . . . , Fk−1, B1, . . . , Bi−1 ⇒ Ai : i ≤ n}
{G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

and an application of Rn+m−1 yields the result:

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Subcase L = deriv+3 : Suppose we have an application

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ n} C,B1, . . . , Bn ⇒ D

(A1 > B1), . . . , (An > Bn)⇒ (C > D)
RIn

and

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
G,F1, . . . , Fk−1 ⇒ C
{G,F1, . . . , Fk−1, D, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
G,F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
RIm

Applying cut of smaller complexity to the premisses yields

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
{G,F1, . . . , Fk−1, B1, . . . , Bi−1 ⇒ Ai : i ≤ n}
{G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

and an application of RIn+m−1 yields the result:

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Subcase L = ag der1: Suppose we have

{C ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D

Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D), ∆
ag CCn



From I/O Logics to Conditional Logics via Sequents – with Provers 21

and

{G⇒ Ei : k 6= i ≤ m}
G⇒ C
{H ⇒ Fi : k 6= i ≤ m}
H ⇒ D
F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
ag CCm

Cuts on formulae of smaller complexity in the premisses yield

{G⇒ Ei : k 6= i ≤ m}
{G⇒ Ai : i ≤ n}
{H ⇒ Fi : k 6= i ≤ m}
{H ⇒ Bi : i ≤ n}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

and an application of ag CCn+m−1 yields the result.

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Subcase L = ag der3: Suppose we have an application

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ n} {D ⇒ Bi : i ≤ n} B1, . . . , Bn ⇒ D

(A1 > B1), . . . , (An > Bn)⇒ (C > D)
ag Rn

and

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
G,F1, . . . , Fk−1 ⇒ C
{G,F1, . . . , Fk−1, D, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k 6= i ≤ m}
H ⇒ D
F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
ag Rm

Applying cut of smaller complexity to the premisses yields

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
{G,F1, . . . , Fk−1, B1, . . . , Bi−1 ⇒ Ai : i ≤ n}
{G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k 6= i ≤ m}
{H ⇒ Bi : i ≤ n}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H

and an application of ag Rn+m−1 yields the result:

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
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Subcase L = c ag der1: Suppose we have

{C ⇒ Ai : 1 ≤ i ≤ n} {D ⇒ Bi : 1 ≤ i ≤ n} B1, . . . , Bn ⇒ D 6` C,D ⇒
Γ, (A1 > B1), . . . , (An > Bn)⇒ (C > D), ∆

c ag CCn

and

{G⇒ Ei : k 6= i ≤ m}
G⇒ C
{H ⇒ Fi : k 6= i ≤ m}
H ⇒ D
F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H
6` G,H ⇒

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
c ag CCm

Cuts on formulae of smaller complexity in the premisses yield

{G⇒ Ei : k 6= i ≤ m}
{G⇒ Ai : i ≤ n}
{H ⇒ Fi : k 6= i ≤ m}
{H ⇒ Bi : i ≤ n}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H
6` G,H ⇒

and an application of c ag CCn+m−1 yields the result:

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

Subcase L = c ag der3: Suppose we have an application

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ n} {D ⇒ Bi : i ≤ n} B1, . . . , Bn ⇒ D 6` C,D ⇒
(A1 > B1), . . . , (An > Bn)⇒ (C > D)

c ag Rn

and

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
G,F1, . . . , Fk−1 ⇒ C
{G,F1, . . . , Fk−1, D, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k 6= i ≤ m}
H ⇒ D
F1, . . . , Fk−1, D, Fk+1, . . . , Fm ⇒ H
6` G,H ⇒

(E1 > F1), . . . , (Ek−1 > Fk−1), (C > D), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)
c ag Rm

Applying cut of smaller complexity to the premisses yields

{G,F1, . . . , Fi−1 ⇒ Ei : i ≤ k − 1}
{G,F1, . . . , Fk−1, B1, . . . , Bi−1 ⇒ Ai : i ≤ n}
{G,F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fi−1 ⇒ Ei : k < i ≤ m}
{H ⇒ Fi : k 6= i ≤ m}
{H ⇒ Bi : i ≤ n}
F1, . . . , Fk−1, B1, . . . , Bn, Fk+1, . . . , Fm ⇒ H
6` G,H ⇒
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and an application of c ag Rn+m−1 yields the result:

(E1 > F1), . . . , (Ek−1 > Fk−1), (A1 > B1), . . . , (An > Bn), (Ek+1 > Fk+1), . . . , (Em > Fm)⇒ (G > H)

A.2 Additional Details for the Proof of Thm. 12 (Equivalence with
the I/O systems)

The full list of cases for the right to left direction is as follows.

Case n = 0: The last applied rule was one of CC0,CCI0,R0,RI0.
Rule applied: CC0:

⇒ D
⇒ (C > D)

CC0  

(>,>)
>

C ` >
(C,>)

SI > ` D
(C,D)

WO

Rule applied: R0: Same as for CC0.
Rule applied: CCI0:

C ⇒ D
⇒ (C > D)

CCI0  

(D,D)
ID

C ` D
(C,D)

SI

Rule applied: RI0: Same as for CCI0.

Case n = 1: Rule applied: CC1:

C ⇒ A B ⇒ D
(A > B)⇒ (C > D)

CC1  

(A,B) C ` A
(C,B)

SI
B ` D

(C,D)
WO

Subcase CCI1:

C ⇒ A B,C ⇒ D

(A > B)⇒ (C > D)
CCI1  

(A,B) C ` A
(C,B)

SI
(C > C)

ID

(C,B ∧ C)
AND

B ∧ C ` D
(C,D)

WO

Subcase R1: Same as CC1.
Subcase RI1: Same as CCI1.
Subcase ag CC1:

C ⇒ A D ⇒ B B ⇒ D
(A > B)⇒ (C > D)

ag CC1
 

(A,B) C ` A
(C,B)

SI
D ` B B ` D

(C,D)
OEQ

Subcase ag R1: Same as for ag CC1.
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Subcase c ag CC1: We use the same derivation as in the case of ag CC1.
However, to ensure that we obtain a derivation valid in c ag der1 we need to
check that none of the I/O pairs used as premisses is contradictory, i.e., specifically
that 6` A ∧B → ⊥. Assume that ` A ∧B → ⊥. Then since C ` A we also have
` C ∧B → ⊥. Since moreover D ` B and B ` D we then obtain ` C ∧D → ⊥,
in contradiction to 6` C,D ⇒ . Thus 6` A ∧B → ⊥.

Subcase c ag R1: Same as for c ag CC1.

Case n = 2: Subcase CC2:

C ⇒ A1 C ⇒ A2 B1, B2 ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)
CC2

 

(A1, B1) C ` A1

(C,B1)
SI

(A2, B2) C ` A2

(C,B2)
SI

(C,B1 ∧B2)
AND

B1 ∧B2 ` D
(C,D)

WO

Subcase CCI2:

C ⇒ A1 C ⇒ A2 B1, B2, C ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)

 

(A1, B1) C ` A1

(C,B1)
SI

(A2, B2) C ` A2

(C,B2)
SI

(C,B1 ∧B2)
AND

(C,C)
ID

(C,B1 ∧B2 ∧ C)
AND

B1 ∧B2 ∧ C ` D
(C,D)

WO

Subcase R2:

C ⇒ A1 C,B1 ⇒ A2 B1, B2 ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)
R2

 

(A1, B1) C ` A1

(C,B1)
SI

(A1, B1) C ` A1

(C,B1)
SI

(A2, B2) C ∧B1 ` A2

(C ∧B1, B2)
SI

(C,B2)
CT

(C,B1 ∧B2)
AND

B1 ∧B2 ` D
(C,D)

WO

Subcase RI2:

C ⇒ A1 C,B1 ⇒ A2 C,B1, B2 ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)

 

(A1, B1) C ` A1 (A2, B2) C ∧B1 ` A2.... D
(C,B1 ∧B2) (C,C)

ID

(C,C ∧B1 ∧B2)
AND

C ∧B1 ∧B2 ` D
(C,D)

WO
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where D is the subderivation from the case R2.
Subcase ag CC2:

C ⇒ A1 C ⇒ A2 D ⇒ B1 D ⇒ B2 B1, B2 ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)
ag CC2

(A1, B1) C ` A1

(C,B1)
SI

(A2, B2) C ` A2

(C,B2)
SI

(C,B1 ∧B2)
AND

D ` B1 ∧B2 B1 ∧B2 ` D
(C,D)

OEQ

Subcase ag R2:

C ⇒ A1 C,B1 ⇒ A2 D ⇒ B1 D ⇒ B2 B1, B2 ⇒ D

(A1 > B1), (A2 > B2)⇒ (C > D)
ag R2

 

(A1, B1) C ` A1

(C,B1)
SI

(A2, B2) C ∧B1 ` A2

(C ∧B1, B2)
SI

(C,B1 ∧B2)
ACT

D ` B1 ∧B2 B1 ∧B2 ` D
(C,D)

OEQ

Subcase c ag CC2:

C ⇒ A1 C ⇒ A2 D ⇒ B1 D ⇒ B2 B1, B2 ⇒ D 6` C,D ⇒
(A1 > B1), (A2 > B2)⇒ (C > D)

ag CC2

Again, we use the derivation from subcase ag CC2. We have to check that none of
the I/O pairs occurring as assumptions of the derivation is inconsistent, i.e., that
6` A1 ∧B1 → ⊥ and 6` A2 ∧B2 → ⊥. From 6` C,D ⇒ we obtain 6` C ∧D → ⊥.
Together with ` C ↔ B1 ∧B2 this yields 6` C ∧B1 ∧B2 → ⊥. Since C ` A1 and
C ` A2 this further yields 6` A1 ∧ B1 ∧ B2 → ⊥ and 6` A2 ∧ B1 ∧ B2 → ⊥, and
thus finally 6` A1 ∧B1 → ⊥ and 6` A2 ∧B2 → ⊥.

Subcase c ag R2:

C ⇒ A1 C,B1 ⇒ A2 D ⇒ B1 D ⇒ B2 B1, B2 ⇒ D 6` C,D ⇒
(A1 > B1), (A2 > B2)⇒ (C > D)

ag R2

Analogous to the previous case we use the derivation from subcase ag R2 and the
reasoning as in the subcase c ag CC2 to obtain 6` A1∧B1 → ⊥ and 6` A2∧B2 → ⊥.

Case n = m+ 2 with m ≥ 1: We use essentially the method of proving soundness
of “cuts between rules” from [11, Lem.2.4.5], using that the rules are constructed
from smaller components via closure under cuts.

Subcase CCm+2:

{C ⇒ Ai : i ≤ m+ 2} B1, . . . , Bm+2 ⇒ D

(A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D)
CCm+2
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We deconstruct the rule CCm+2 using the formula (C > Bm+1 ∧Bm+2) into the
following two rules:

{C ⇒ Ai : i ≤ m} C ⇒ C B1, . . . , Bm, Bm+1 ∧Bm+2 ⇒ D

(A1 > B1), . . . , (Am > Bm), (C > Bm+1 ∧Bm+2)⇒ (C > D)
CCm+1

C ⇒ Am+1 C ⇒ Am+2 Bm+1, Bm+2 ⇒ Bm+1 ∧Bm+2

(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C > Bm+1 ∧Bm+2)
CC2

Since the premisses of these rules are derivable from the premisses of the original
rule, their conclusions are derivable. Hence we can use the induction hypothesis
to obtain

{(Ai, Bi) : i ≤ m} ∪ {(C,Bm+1 ∧Bm+2)} `L (C,D)

and
{(Am+1, Bm+1), (Am+2, Bm+2)} `L (C,Bm+1 ∧Bm+2)

Piecing these together we obtain {(Ai, Bi) : i ≤ m+ 2} `L (C,D).
Subcase CCIm+2:

{C ⇒ Ai : i ≤ m+ 2} C,B1, . . . , Bm+2 ⇒ D

(A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D)
CCIm+2

is deconstructed using the formula (C > C ∧Bm+1 ∧Bm+2) into

{C ⇒ Ai : i ≤ m} C ⇒ C C,B1, . . . , Bm, C ∧Bm+1 ∧Bm+2 ⇒ D

(A1 > B1), . . . , (Am > Bm), (C > C ∧Bm+1 ∧Bm+2)⇒ (C > D)
CCIm+1

C ⇒ Am+1 C ⇒ Am+2 C,Bm+1, Bm+2 ⇒ C ∧Bm+1 ∧Bm+2

(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C > C ∧Bm+1 ∧Bm+2)
CCI2

Subcase Rm+2:

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ m+ 2} B1, . . . , Bm+2 ⇒ D

(A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D)
Rm+2

is deconstructed using the formula (C ∧
∧

i≤mBi > Bm+1 ∧Bm+2) into

{C,B1, . . . , Bi−1 ⇒ Ai : i ≤ m}
C,B1, . . . , Bm ⇒ C ∧

∧
i≤mBi

B1, . . . , Bm, Bm+1 ∧Bm+2 ⇒ D

(A1 > B1), . . . , (Am > Bm), (C ∧
∧

i≤mBi > Bm+1 ∧Bm+2)⇒ (C > D)
Rm+1

C ∧
∧

i≤mBi ⇒ Am+1 C ∧
∧

i≤mBi, Bm+1 ⇒ Am+2 Bm+1, Bm+2 ⇒ Bm+1 ∧Bm+2

(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C ∧
∧

i≤mBi > Bm+1 ∧Bm+2)
R2

Subcase RIm+2:

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ m+ 2} B1, . . . , Bm+2, C ⇒ D

(A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D)
RIm+2
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is deconstructed using the formula (C ∧
∧

i≤mBi > C ∧
∧

i≤m+2Bi) into

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ m}
C,B1, . . . , Bm ⇒ C ∧

∧
i≤mBi

B1, . . . , Bm, C ∧
∧

i≤m+2Bi, C ⇒ D

(A1 > B1), . . . , (Am > Bm), (C ∧
∧

i≤mBi > C ∧
∧

i≤m+2Bi)⇒ (C > D)
RIm+1

C ∧
∧

i≤mBi ⇒ Am+1

C ∧
∧

i≤mBi, Bm+1 ⇒ Am+2

C ∧
∧

i≤mBi, Bm+1, Bm+2 ⇒ C ∧
∧

i≤m+2Bi

(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C ∧
∧

i≤mBi > C ∧
∧

i≤m+2Bi)
RI2

Subcase ag CCm+2:

{C ⇒ Ai : 1 ≤ i ≤ m+ 2} {D ⇒ Bi : 1 ≤ i ≤ m+ 2} B1, . . . , Bm+2 ⇒ D

(A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D)
ag CCm+2

is deconstructed using the formula (C > (Bm+1 ∧Bm+2) ∨D) into

{C ⇒ Ai : 1 ≤ i ≤ m}
C ⇒ C

{D ⇒ Bi : 1 ≤ i ≤ m}
D ⇒ (Bm+1 ∧Bm+2) ∨D

B1, . . . , Bm, (Bm+1 ∧Bm+2) ∨D ⇒ D

(A1 > B1), . . . , (Am > Bm), (C > (Bm+1 ∧Bm+2) ∨D)⇒ (C > D)
ag CCm+1

and

C ⇒ Am+1

C ⇒ Am+2

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+1

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+2

Bm+1, Bm+2 ⇒ (Bm+1 ∧Bm+2) ∨D
(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C > (Bm+1 ∧Bm+2) ∨D)

ag CC2

Subcase ag Rm+2:

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ m+ 2}
{D ⇒ Bi : 1 ≤ i ≤ m+ 2}

B1, . . . , Bm+2 ⇒ D

Γ, (A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D), ∆
ag Rm+2

is deconstructed using the formula (C ∧
∧

i≤mBi > (Bm+1 ∧Bm+2) ∨D) into

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ m}
C,B1, . . . , Bm ⇒ C ∧

∧
i≤mBi

{D ⇒ Bi : 1 ≤ i ≤ m}
D ⇒ (Bm+1 ∧Bm+2) ∨D

B1, . . . , Bm, (Bm+1 ∧Bm+2) ∨D ⇒ D

(A1 > B1), . . . , (Am > Bm), (C ∧
∧

i≤mBi > (Bm+1 ∧Bm+2) ∨D)⇒ (C > D)
ag Rm+1
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and

C ∧
∧

i≤mBi ⇒ Am+1

C ∧
∧

i≤mBi, Bm+1 ⇒ Am+2

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+1

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+2

Bm+1, Bm+2 ⇒ (Bm+1 ∧Bm+2) ∨D
(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C ∧

∧
i≤mBi > (Bm+1 ∧Bm+2) ∨D)

ag R2

Subcase c ag CCm+2: The construction is the same as for the subcase ag CCm+2,
i.e.:

{C ⇒ Ai : 1 ≤ i ≤ m+ 2}
{D ⇒ Bi : 1 ≤ i ≤ m+ 2}

B1, . . . , Bm+2 ⇒ D
6` C,D ⇒

(A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D)
ag CCm+2

is deconstructed using the formula (C > (Bm+1 ∧Bm+2) ∨D) into

{C ⇒ Ai : 1 ≤ i ≤ m}
C ⇒ C

{D ⇒ Bi : 1 ≤ i ≤ m}
D ⇒ (Bm+1 ∧Bm+2) ∨D

B1, . . . , Bm, (Bm+1 ∧Bm+2) ∨D ⇒ D
6` C,D ⇒

(A1 > B1), . . . , (Am > Bm), (C > (Bm+1 ∧Bm+2) ∨D)⇒ (C > D)
c ag CCm+1

and

C ⇒ Am+1

C ⇒ Am+2

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+1

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+2

Bm+1, Bm+2 ⇒ (Bm+1 ∧Bm+2) ∨D
6` C, (Bm+1 ∧Bm+2) ∨D ⇒

(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C > (Bm+1 ∧Bm+2) ∨D)
c ag CC2

Thus we also have to show that 6` C, (Bm+1 ∧ Bm+2) ∨ D ⇒ . Assume that
` C, (Bm+1 ∧Bm+2) ∨D ⇒ . Then by invertibility of the propositional rules we
also have ` C,D ⇒ , in contradiction to 6` C,D. Thus the statement holds.

Subcase c ag Rm+2: Again, the construction itself is the same as for the
subcase ag Rm+2, i.e.:

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ m+ 2}
{D ⇒ Bi : 1 ≤ i ≤ m+ 2}

B1, . . . , Bm+2 ⇒ D 6` C,D ⇒
Γ, (A1 > B1), . . . , (Am+2 > Bm+2)⇒ (C > D), ∆

c ag Rm+2
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is deconstructed using the formula (C ∧
∧

i≤mBi > (Bm+1 ∧Bm+2) ∨D) into

{C,B1, . . . , Bi−1 ⇒ Ai : 1 ≤ i ≤ m}
C,B1, . . . , Bm ⇒ C ∧

∧
i≤mBi

{D ⇒ Bi : 1 ≤ i ≤ m}
D ⇒ (Bm+1 ∧Bm+2) ∨D

B1, . . . , Bm, (Bm+1 ∧Bm+2) ∨D ⇒ D
6` C,D ⇒

Γ, (A1 > B1), . . . , (Am > Bm), (C ∧
∧

i≤mBi > (Bm+1 ∧Bm+2) ∨D)⇒ (C > D), ∆
c ag Rm+1

C ∧
∧

i≤mBi ⇒ Am+1

C ∧
∧

i≤mBi, Bm+1 ⇒ Am+2

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+1

(Bm+1 ∧Bm+2) ∨D ⇒ Bm+2

Bm+1, Bm+2 ⇒ (Bm+1 ∧Bm+2) ∨D
6` C ∧

∧
i≤mBi, (Bm+1 ∧Bm+2) ∨D ⇒

(Am+1 > Bm+1), (Am+2 > Bm+2)⇒ (C ∧
∧

i≤mBi > (Bm+1 ∧Bm+2) ∨D)
c ag R2

Again we thus need to show that the underivability statement is true, i.e., that
6` C ∧

∧
i≤mBi, (Bm+1 ∧Bm+2)∨D ⇒ . Assume otherwise. Then by invertibility

of the propositional rules we also have ` C∧
∧

i≤mBi, Bm+1∧Bm+2 ⇒ and hence
` C,B1, . . . , Bm+2 ⇒ . Together with ` D ⇒ Bi for i ≤ m+ 2 and admissibility
of Contraction this gives ` C,D ⇒ , in contradiction to 6` C,D ⇒ . ut
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