The Equational Theory of
the Natural Join and Inner Union is Decidable*

Luigi Santocanale
luigi.santocanale@lis-lab.fr

LIS, CNRS UMR 7020, Aix-Marseille Université

Abstract. The natural join and the inner union operations combine
relations of a database. Tropashko and Spight [25] realized that these
two operations are the meet and join operations in a class of lattices,
known by now as the relational lattices. They proposed then lattice the-
ory as an algebraic approach to the theory of databases, alternative to
the relational algebra.

Previous works [17,23] proved that the quasiequational theory of these
lattices—that is, the set of definite Horn sentences valid in all the rela-
tional lattices—is undecidable, even when the signature is restricted to
the pure lattice signature.

We prove here that the equational theory of relational lattices is decid-
able. That, is we provide an algorithm to decide if two lattice theoretic
terms t,s are made equal under all interpretations in some relational
lattice. We achieve this goal by showing that if an inclusion ¢ < s fails
in any of these lattices, then it fails in a relational lattice whose size is
bound by a triple exponential function of the sizes of ¢t and s.

1 Introduction

The natural join and the inner union operations combine relations (i.e. tables)
of a database. SQL-like languages construct queries by making repeated use of
the natural join and of the union. The inner union is a mathematically well
behaved variant of the union—for example, it does not introduce empty cells.
Tropashko and Spight realized [26,25] that these two operations are the meet
and join operations in a class of lattices, known by now as the class of relational
lattices. They proposed then lattice theory as an algebraic approach, alternative
to Codd’s relational algebra [4], to the theory of databases.

Roughly speaking, elements of the relational lattice R(D, A) are tables of a
database, where A is a set of columns’ names and D is the set of possible cells’
values. Let us illustrate the two operations with examples. The natural join takes
two tables and constructs a new one whose columns are indexed by the union of
the headers, and whose rows are glueings of the rows along identical values in
common columns:
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The inner union restricts two tables to the common columns and lists all the rows
of the two tables. The following example suggests how to construct, using this
operation, a table of users given two (or more) tables of people having different
roles.
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Since we shall focus on lattice-theoretic considerations, we shall use the symbols
A and V, in place of the symbols > for U used by database theorists.

A first important attempt to axiomatize these lattices was done by Litak,
Mikulds, and Hidders [17]. They proposed an axiomatization, comprising equa-
tions and quasiequations, in a signature that extends the pure lattice signature
with a constant, the header constant. A main result of that paper is that the
quasiequational theory of relational lattices is undecidable in this extended signa-
ture. Their proof mimics Maddux’s proof that the equational theory of cylindric
algebras of dimension n > 3 is undecidable [18].

Their result was further refined by us in [23]: the quasiequational theory
of relational lattices is undecidable even when the signature considered is the
least one, comprising only the meet (natural join) and the join operations (inner
union). Our proof relied on a deeper algebraic insight: we proved that it is un-
decidable whether a finite subdirectly irreducible lattice can be embedded into a
relational lattice—from this kind of result, undecidability of the quasiequational
theory immediately follows. We proved the above statement by reducing to it
an undecidable problem in modal logic, the coverability problem of a frame by
a universal 85°-product frame [12]. In turn, this problem was shown to be un-
decidable by reducing it to the representability problem of finite simple relation
algebras [11].

We prove here that the equational theory of relational lattices is decidable.
That is, we prove that it is decidable whether two lattice terms ¢ and s are such
that [t], = [s]v, for any valuation v : X — R(D, A) of variables in a relational
lattice R(D, A). We achieve this goal by showing that this theory has a kind
of finite model property of bounded size. Out main result, Theorem 25, sounds
as follows: if an inclusion t < s fails in a relational lattice R(D, A), then such
inclusion fails in a finite lattice R(E, B), such that B is bound by an exponential
function in the size of t and s, and E is linear in the size of t. It follows that
the size of R(E, B) can be bound by a triple exponential function in the size of
t and s. In algebraic terms, our finite model theorem can be stated by saying
that the variety generated by the relational lattices is actually generated by its
finite generators, the relational lattices that are finite.

In our opinion, our results are significant in two respects. Firstly, the al-
gebra of the natural join and of the inner union has a direct connection to



the widespread SQL-like languages, see e.g. [17]. We dare to say that most of
programmers that use a database—more or less explicitly, for example within
server-side web programs—are using these operations. In view of the widespread
use of these languages, the decidability status of this algebraic system deserved
being settled. Moreover, we believe that the mathematical insights contained in
our decidability proof shall contribute to understand further the algebraic sys-
tem. For example, it is not known yet whether a complete finite axiomatic basis
exists for relational lattices; finding it could eventually yield applications, e.g.
on the side of automated optimization of queries.

Secondly, our work exhibits the equational theory of relational lattices as
a decidable one within a long list of undecidable logical theories [18,11,12,17,
23] that are used used to model the constructions of relational algebra. We are
exploring limits of decidability, a research direction widely explored in automata
theoretic settings starting from [3]. We do this, within logic and with plenty
of potential applications, coming from the undecidable side and crossing the
border: after the quasiequational theory, undecidable, the next natural theory
on the list, the equational theory of relational lattices, is decidable.

On the technical side, our work relies on [22] where the duality theory for
finite lattices developed in [21] was used to investigate equational axiomatiza-
tions of relational lattices. A key insight from [22] is that relational lattices are,
in some sense, duals of generalized ultrametric spaces over a powerset algebra.
It is this perspective that made it possible to uncover the strong similarity be-
tween the lattice-theoretic methods and tools from modal logic—in particular
the theory of combination of modal logics, see e.g. [15]. We exploit here this
similarity to adapt filtrations techniques from modal logic [8] to lattice theory.
Also, the notion of generalized ultrametric spaces over a powerset algebra and
the characterization of injective objects in the category of these spaces have been
fundamental tools to prove the undecidability of the quasiequational theory [23]
as well as, in the present case, the decidability of the equational theory.

The paper is organised as follows. We recall in Section 2 some definitions and
facts about lattices. The relational lattices R(D, A) are introduced in Section 3.
In Section 4 we show how to construct a lattice L(X,d) from a generalized
ultrametric space (X,d). This contruction generalizes the construction of the
lattice R(D, A): if X = DA is the set of all functions from A to D and § is
as a sort of Hamming distance, then L(X,d) = R(D, A). We use the functorial
properties of L to argue that when a finite space (X,d) has the property of
being pairwise-complete, then L(X,J) belongs to the variety generated by the
relational lattices. In Section 5 we show that if an inclusion ¢ < s fails in a
lattice R(D, A), then we can construct a finite subset T'(f,t) C D4, a “tableau”
witnessing the failure, such that if T(f,¢) C T and T is finite, then ¢ < s fails
in a finite lattice of the form L(T,dp), where the distance dp takes values in a
finite powerset algebra P(B). In Section 6, we show how to extend T'(f,t) to a
finite bigger set G, so that (G,dp5) as a space over the powerset algebra P(B) is
pairwise-complete. This lattice L(G,dp) fails the inclusion ¢ < s; out of it, we
build a lattice of the form R(E, B), which fails the same inclusion; the sizes of E



and B can be bound by functions of the sizes of the terms ¢ and s. Perspectives
for future research directions appear in the last Section 7.

2 Elementary notions on orders and lattices

We assume some basic knowledge of order and lattice theory as presented in
standard monographs [5,9]. Most of the lattice theoretic tools we use originate
from the monograph [7].

A lattice is a poset L such that every finite non-empty subset X C L admits
a smallest upper bound \/ X and a greatest lower bound A X. A lattice can also
be understood as a structure 2 for the functional signature (V, A), such that the
interpretations of these two binary function symbols both give 2l the structure
of an idempotent commutative semigroup, the two semigroup structures being
connected by the absorption laws z A (y V) = z and z V (y A z) = 2. Once
a lattice is presented as such structure, the order is recovered by stating that
x < y holds if and only if x Ay = z.

A lattice L is complete if any subset X C L admits a smallest upper bound
\/ X. It can be shown that this condition implies that any subset X C L admits
a greatest lower bound A X. A lattice is bounded if it has a least element L
and a greatest element T. A complete lattice (in particular, a finite lattice) is
bounded, since \/ @ and A @ are, respectively, the least and greatest elements of
the lattice.

If P and @ are partially ordered sets, then a function f : P — Q is order-
preserving (or monotone) if p < p’ implies f(p) < f(p’). If L and M are lattices,
then a function f : L — M is a lattice morphism if it preserves the lattice
operations V and A. A lattice morphism is always order-preserving. A lattice
morphism f : L. — M between bounded lattices L and M is bound-preserving if
f(L)y=_Land f(T)=T. A function f: P — @Q is said to be left adjoint to an
order-preserving g : @ — P if f(p) < ¢ holds if and only if p < g(q) holds, for
every p € P and q € Q; such a left adjoint, when it exists, is unique. Dually, a
function g : Q — P is said to be right adjoint to an order-preserving f : P — Q
if f(p) < ¢ holds if and only if p < g(q) holds; clearly, f is left adjoint to g if
and only if g is right adjoint to f, so we say that f and g form an adjoint pair. If
P and @ are complete lattices, the property of being a left adjoint (resp., right
adjoint) to some g (resp., to some f) is equivalent to preserving all (possibly
infinite) joins (resp., all meets).

A Moore family on P(U) is a collection F of subsets of U which is closed under
arbitrary intersections. Given a Moore family F on P(U), the correspondence
sending Z C U to Z := (Y € F| Z C Y} is a closure operator on P(U),
that is, an order-preserving inflationary and idempotent endofunction of P(U).
The subsets in F, called the closed sets, are exactly the fixpoints of this closure
operator. A Moore family F has the structure of a complete lattice where

A X=X, \V x={Jx. (1)



The notion of Moore family can also be defined for an arbitrary complete lattice
L. Moore families on L turns out to be in bijection with closure operators on L.
We shall actually consider the dual notion: a dual Moore family on a complete
lattice L is a subset F C L that is closed under arbitrary joins. Such an F
determines an interior operator (an order-preserving decreasing and idempotent
endofunction on L) by the formula 2° = \/{y € F | y < x } and has the structure
of a complete lattice, where \/ - X :=\/; X and A\ » X := (A X)°. Dual Moore
families on L are in bijection with interior operators on L. Finally, let us mention
that closure (resp., interior) operators arise from adjoint pairs f and g (with f
left adjoint to g) by the formula Z = g(f(z)) (resp., z° = f(g(x)));

3 The relational lattices R(D, A)

Throughout this paper we use the YX for the set of functions of domain ¥ and
codomain X.

Let A be a collection of attributes (or column names) and let D be a set of
cell values. A relation on A and D is a pair (o, T) where o C A and T C D“.
Elements of the relational lattice! R(D, A) are relations on A and D. Informally,
a relation (o, T) represents a table of a relational database, with « being the
header, i.e. the collection of names of columns, while 7" is the collection of rows.

Before we define the natural join, the inner union operations, and the order
on R(D, A), let us recall some key operations. If « C 3 C A and f € DP, then
we shall use fl, € D® for the restriction of f to «; if T C DP, then T [,
shall denote projection to «, that is, the direct image of T along restriction,
Tla:={fla| feT};if T C D then ig(T) shall denote cylindrification to f,
that is, the inverse image of restriction, ig(T) := { f € D | fjo € T'}. Recall
that ig is right adjoint to [,. With this in mind, the natural join and the inner
union of relations are respectively described by the following formulas:

(a1, Th) A (a2, T2) = (g U, T)
where T'={f| fla, € T;,i=1,2}
= Ty Uas (T1) N oy Uas (T2)
(a1, Th) V (a2, T2) := (g N, T)
where T={f|3i€{1,2},39g€T; s.t. g laynas = [ }
=T1larna, UT2lainas -

The order is then given by (a1,T1) < (a9, T2) iff s C a7 and T1[4,C Tb.

A convenient way of describing these lattices was introduced in [17, Lemma
2.1]. The authors showed that the relational lattices R(D, A) are isomorphic to
the lattices of closed subsets of AU D#, where Z C AU D# is said to be closed

! In [17] such a lattice is called full relational lattice. The wording “class of relational
lattices” is used there for the class of lattices that have an embedding into some
lattice of the form R(D, A).



if it is a fixed-point of the closure operator ( —) defined as
Z:=ZU{feD*| A\ ZC Eq(f,g), for some g Z},

where in the formula above Eq(f, g) is the equalizer of f and g. Letting 6(f, g) :=
{x € A f(z) # g(z) }, the above definition of the closure operator is obviously
equivalent to the following one:

Z:=aU{feD*|f g) Ca, forsome g€ ZN DA}, witha=ZnN A.

From now on, we rely on this representation of relational lattices.

4 Lattices from metric spaces

Generalized ultrametric spaces over a Boolean algebra P(A) turn out to be a
convenient tool for studying relational lattices [17,22]. Metrics are well known
tools from graph theory, see e.g. [10]. Generalized ultrametric spaces over a
Boolean algebra P(A) were introduced in [20] to study equivalence relations.

Definition 1. An ultrametric space over P(A) (briefly, a space) is a pair (X, 6),
with 6 : X x X — P(A) such that, for every f,g,h € X,

6(f, f)co, 6(f,9) Co(f,h)Ud(h,g), (2)
6(f,g) =0 implies f =g, 5(f,9) =0(g, f)- (3)

That is, we have defined an ultrametric space over P(A) as a category (with a
small set of objects) enriched over (P(A)°P, (), U) (equations (2), see [16]) which
moreover is reduced and symmetric (conditions (3)) .

A morphism of spaces® 1 : (X,dx) — (Y,dy) is a function ¢ : X — Y such
that oy (¥(f),%(9)) < 0x(f,g), for each f,g € X. Obviously, spaces and their
morphisms form a category. If 0y (¢(f), ¥ (g)) = dx(f, g), for each f,g € X, then
¥ is said to be an isometry. A space (X, 0) is said to be pairwise-complete, see
[2], or convex, see [19], if, for each f,g € X and «, 5 C A,

d(f,9) C aU B implies 6(f,h) C o and 6(h,g) C B, for some h € X.

Proposition 2 (see [20,2]). If A is finite, then a space is injective in the
category of spaces if and only if it is pairwise-complete.

If (X,dx) is a space and Y C X, then the restriction of dx to Y induces
a space (Y,0x); we say then that (Y, dx) is a subspace of X. Notice that the
inclusion of Y into X yields an isometry of spaces.

Our main example of space over P(A) is (D4, 4), with D4 the set of functions
from A to D and the distance defined by

6(f,9) :=={ac Al f(a) #gla)}. (4)

2 As P(A) is not totally ordered, we avoid calling a morphism “non-ezpanding map”
as it is often done in the literature.



A second example is a slight generalization of the previous one. Given a surjective
function 7 : D — A, let Sec, denote the set of all the functions f : A — D such
that wo f = ids. Then Sec, C DA, so Sec, with the distance inherited from
(D4, 6) can be made into a space. Considering the first projection 7 : A x D —
A, we see that (D4, §) is isomorphic to the space Sec,,. By identifying f € Sec,
with a vector (f(a) € 771(a) | a € A), we see that

Sec, = H D,, where D, := 71 *(a). (5)
acA

That is, the spaces of the form Sec, are naturally related to Hamming graphs
in combinatorics [13], dependent function types in type theory [14, 6], universal
S5-product frames in modal logic [12].

Theorem 3 (see [23]). Spaces of the form Sec, are, up to isomorphism, ex-
actly the injective objects in the category of spaces.

4.1 The lattice of a space

The construction of the lattice R(D, A) can be carried out from any space.
Namely, for a space (X,d) over P(A), say that Z C X is a-closed if g € Z
and (f,g) C a implies f € Z. Clearly, a-closed subsets of X form a Moore fam-
ily so, for Z C X, we denote by Z" the least a-closed subset of X containing Z.
Observe that f € Z“ if and only if 0(f,9) C « for some g € Z. Next and in the
rest of the paper, we shall exploit the obvious isomorphism between P(A)x P(X)
and P(AU X) (where we suppose A and X disjoint) and notationally identify a
pair (a, Z) € P(A) x P(X) with its image a UX € P(AU X). Let us say then
that (a, Z) is closed if Z is a-closed. Closed subsets of P(A U X) form a Moore
family, whence a complete lattice where the order is subset inclusion.

Definition 4. For a space (X, 9), the lattice L(X,d) is the lattice of closed sub-
sets of P(AUX).

Clearly, for the space (D4,4), we have L(D#,5) = R(D, A). Let us mention that
meets and joins L(X,J) are computed using the formulas in (1). In particular,
for joins,

aUpB

(0, Y)V(,2)=(aUB,YUZ 7).

The above formula yields that, for any f € X, f € (a,Y) V (8, Z) if and only if
0(f,9) CaUp, for some g €Y UZ.

We argue next that the above construction is functorial. Below, for a a func-

tion 1 : X — Y, ¢t : P(Y) — P(X) is the inverse image of 1, defined by
61(2) = {ze X | bla) e Z}.
Proposition 5. If ¢ : (X,0x) — (Y,dy) is a space morphism and (o, Z) €
L(Y,dy), then (a,v=1(Z)) € L(X,dx). Therefore, by defining L(¢)(a, Z) =
(a,v=Y(2)), the construction L lifts to a contravariant functor from the category
of spaces to the category of complete meet-semilattices.



Proof. Let f € X be such that, for some g € ¥»~=5Z) (ie. ¥(g9) € Z), we
have dx(f,g) C a. Then dy (¥(f),¥(g9)) C dox(f,9) C «, so ¥(f) € Z, since
Z is a-closed, and f € ¥~ !(Z). In order to see that L(¢)) preserves arbitrary
intersections, recall that =1 does. a

Notice that L(1) might not preserve arbitrary joins.

Proposition 6. The lattices L(Sec,) generate the same lattice variety of the
lattices R(D, A).

That is, a lattice equation holds in all the lattices L(Sec,) if and only if it holds
in all the relation lattices R(D, A).

Proof. Clearly, each lattice R(D, A) is of the form L(Sec,). Thus we only need
to argue that every lattice of the form L(Sec,) belongs to the lattice variety
generated by the R(D, A), that is, the least class of lattices containing the lattices
R(D, A) and closed under products, sublattices, and homomorphic images. We
argue as follows.

As every space Sec, embeds into a space (D4, §) and a space Sec is injective,
we have maps ¢ : Sec, — (D?,6) and ¢ : (D?,§) — Sec, such that 1 os =
idsec, . By functoriality, L(¢) o L(1)) = id|(sec,). Since L(¢) preserves all meets,
it has a left adjoint ¢ : L(Sec,) — L(D#,5) = R(D, A). It is easy to see that
(4,L(v)) is an EA-duet in the sense of [24, Definition 9.1] and therefore L(Sec)
is a homomorphic image of a sublattice of R(D, A), by [24, Lemma 9.7]. O

Remark 7. For the statement of [24, Lemma 9.7] to hold, additional conditions
are necessary on the domain and the codomain of an EA-duet. Yet the implica-
tion that derives being a homomorphic image of a sublattice from the existence
of an EA-duet is still valid under the hypothesis that the two arrows of the
EA-duet preserve one all joins and, the other, all meets.

4.2 Extension from a Boolean subalgebra

We suppose that P(B) is a Boolean subalgebra of P(A) via an inclusion ¢ :
P(B) — P(A). If (X,dp) is a space over P(B), then we can transform it into
a space (X, 04) over P(A) by setting da(f,g) = i(05(f,g)). We have therefore
two lattices L(X,dp) and L(X,d4).

Proposition 8. Let 6 C B andY C X. Then Y is B-closed if and only if it is
i(B)-closed. Consequently the map i, sending (8,Y) € L(X,05) to i.(8,Y) :=
(i(8),Y) € L(X,04), is a lattice embedding.

Proof. Observe that dg(f,g) C B if and only if d4(f,g9) = i(d5(f,g9)) C i(B).

This immediately implies the first statement of the Lemma, but also that, for

Y C X, vy =7 Using the fact that meets are computed as intersections



and that ¢ preserves intersections, it is easily seen that i, preserves meets. For
joins let us compute as follows:

(81, Y1) Vi (B2, Ya) = (i(81) Ui(B2). T U TR 7

= (51U A). IUYy ™) = (181 U o) U™
:i*(ﬁlUﬂmmﬁlum) =0, ((B1, Y1) V (B2, Y2)). 0

5 Failures from big to small lattices

The set of lattice terms is generated by the following grammar:
t=a | T|tAt]| L|tVE,

where = belongs to a set of variables X. For lattice terms t4,...,%,, we use
Vars(ty,...,t,) to denote the set of variables (which is finite) occurring in any
of these terms. The size of a term ¢ is the number of nodes in the representation
of t as a tree. If v : X — L is a valuation of variables into a lattice L, the value
of a term ¢ w.r.t. the valuation v is defined by induction in the obvious way; here
we shall use [t], for it.

For t, s two lattice terms, the inclusion ¢ < s is the equation t V s = s. Any
lattice-theoretic equation is equivalent to a pair of inclusions, so the problem of
deciding the equational theory of a class of lattices reduces to the problem of
decing inclusions. An inclusion ¢ < s is valid in a class of lattices K if, for any
valuation v : X — L with L € K, [v], < [s]; it fails in /C if for some L € KC and
v: X — L we have [[t], £ [s]».

From now on, our goal shall be proving that if an inclusion ¢ < s fails in a
lattice R(D, A), then it fails in a lattice L(Sec,), where Sec, is a finite space
over some finite Boolean algebra P(B). The size of B and of the space Sec,,
shall be inferred from of the sizes of ¢ and s.

From now on, we us fix terms ¢ and s, a lattice R(D, A), and a valuation
v:X — R(D, A) such that [t], Z [s].-

Lemma 9. If, for some a € A, a € [t], \ [s]v, then the inclusion t < s fails in
the lattice R(E, B) with B =1 and E a singleton.

Proof. The map sending (a, X) € R(D,A) to a € P(A) is lattice morphism.
Therefore if t < s fails because of a € A, then it already fails in the Boolean
lattice P(A). Since P(A) is distributive, ¢t < s fails in the two elements lattice.
Now, when B = () and FE is a singleton R(E, B) is (isomorphic to) the 2 elements
lattice, so the same equation fails in R(E, B). O

Because of the Lemma, we shall focus on functions f € D4 such that f €
[t \ [s]»- In this case we shall say that f witnesses the failure of t < s (in
R(D, A), w.r.t. the valuation v).



5.1 The lattices R(D, A)r

Let T be a subset of D* and consider the subspace (T, §) of D# induced by the in-
clusion ip : T C DA, According to Proposition 5, the inclusion ip induces a com-
plete meet-semilattice homomorphism L(iz) : R(D, A) = L(D4,8) — L(T,6).
Such a map has a right adjoint jr : L(T,8) — L(D#,§), which is a complete
join-semilattice homomorphism; moreover jr is injective, since L(ir) is surjec-
tive.

Proposition 10. For a subset T C D? and (o, X) € R(D, A), (a0, X NT") =
jr(L(ip(a, X)). The set of elements of the form (a, X NT"), for a C A and
X C DA, is a complete sub-join-semilattice of R(D, A).
Proof. 1t is easily seen that L(iz)(e, X) = (o, X N T) and that, for (8,Y) €
L(T,8), (8.Y) € (o, XT) if and only if (8, Y") C (o, X), 50 j0(8,Y) = (8.Y").
It follows that the elements of the form (o, X N T°), where (o, X) € R(D, A),
form a sub-complete join-semilattice of R(D, A): indeed, they are the image of
lattice L(T, §) under the complete join-semilattice homomorphism jr. We argue

next that, for any pair (o, X) (we do not require that X is a-closed) there is a
Z C D which is a-closed and such that X N T =ZNT". Indeed, the equality

XNT " =XNT"NT
is easily verified, so we can let Z = X N T ad

Therefore, the set of pairs of the form (o, X N7T") is a dual Moore family
and a complete lattice, where joins are computed as in R(D, A), and where meets
are computed in a way that we shall make explicit. For the moment, let us fix
the notation.

Definition 11. R(D, A)r is the lattice of elements of the form (a, X N1T").

By the proof of Proposition 10, the lattice R(D, A)r is isomorphic to the latttice
L(T,d). We shall use the symbol J\ for meets in R(D, A)r; these are computed
by the formula

Aie](aiin) = (m O[i7 m X’L) )
iel el
where, for each (a, X) € R(D, A), (o, X)° is the greatest pair in R(D, A)r that
is below (a, X). Standard theory on adjoints yields

(0, X)° = (jroL(ir))(a,X) = (a, X NT").
We obtain in this way the explicit formula for the binary meet in R(D, A)7:

- - — —— anf
(@, XATHNB,Y AT )= (anB,XAT NY AT NT ).

Remark that we have
(a, X)N(B,Y) C (a, X) N (B,Y)
whenever (a, X) and (8,Y) are in R(D, A)r.
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Lemma 12. Let (o, X),(3,Y) €e R(D,A)r andlet f € T. If f € (o, X)N(B,Y),
then f € (a, X)N(5,Y).

Proof. This is immediate from the fact that

XAT NY AT NTCXAT NYAT

5.2 Preservation of the failure in the lattices R(D, A)r

Recall that v : X — R(D, A) is the valuation that we have fixed.

Definition 13. For a susbset T of D, the the valuation vy : X — R(D, A)7 is
defined by the formula vr(x) = v(x)°, for each x € X.

More explicitley, we have
vp(z) = (0, TN X"), where (a,X) =uv(z).

The valuation vp takes values in R(D, A)7, while v takes value in R(D, A). It
is possible then to evaluate a lattice term ¢ in R(D, A)p using vy and to evaluate
it in R(D, A) using v. To improve readability, we shall use the notation [¢]r for
the result of evaluating the term in R(D, A)p, and the notation [¢] for the result
of evaluating it in R(D, A). Since both [t] and [t]r are subsets of P(A U X), it
is possible to compare them using inclusion.

Lemma 14. The relation [s]r C [s] holds, for each T C D4 and each lattice
term s.

Proof. The proof of the Lemma is a straightforward induction, considering that
vr(z) Co(z) for all x € X. For example, using [s;]r C [s:], for i = 1,2,

ﬂsl A\ SQ]]T = [[81]]’[%\[[52]]']’ Q [[51]]']’ N [[SQ]]T Q [[81]] N HSQH = [Sl A\ 82]] . O
A straightforward induction also yields:

Lemma 15. Let T C D be a finite subset, let t be a lattice term and suppose
that [t] = (B,Y). Then [t]r is of the form (3,Y") for some Y' C DA.

Definition 16. Let us define, for each term t and f € D? such that f € [t], a
finite set T(f,t) C D? as follows:

— Ift is the variable x, then we let T(f,t) :={f}.

— Ift = s1A\sa, then f € [s1]N[sz2], so we define T(f,t) :=T(f,s1)UT(f,s2).

— Ift =51V sy and [[s;] = (a4, X;) fori=1,2, then f € [s1V s3] gives that,
for some i € {1,2} there exists g € X; such that 6(f,g) C a3 Uay. We set
then T(f,t) :={f}UT(g,s:).

Obviously, we have:

Lemma 17. For each lattice term t and f € D* such that f € [t], f € T(f,t).

11



Proposition 18. For cach lattice term t and f € DA such that f € [t], if
T(f,t) CT, then f € [t]r.

Proof. We prove the statement by induction on t.

— If ¢ is the variable  and f € [z] = v(z) = (5,Y), then f € Y. We have
T(f,z) = {f}. Obviously, f e YN{f} =Y NT(f,t) CYNT,s0 f €
(8,YNT") = vr(z) = [t]r.

— Suppose t = 51 A sa s0 f € [s1 A s3] yields f € [s1] and f € [s2]. We have
defined T'(f,t) = T(f,s1) UT(f,s2) C T and so, using T(f,s;) C T and the
induction hypothesis, f € [s;]r for i = 1,2. By Lemma 17 f € T, so we can
use Lemma 12 asserting that

f € [[SIHT A\ [[SZHT = [[31 A SQHT .

— Suppose t = s1V sg and f € [s1 V s2]; let also (8;,Y;) := [s;] for i = 1,2.
We have defined T'(f,t) :=={ f }UT(g,s;) for some i € { 1,2} and for some
g € [si] such that 6(f,g) C 81 U B2. Now g € T(g,s;) C T(f,t) C T so,
by the induction hypothesis, g € [s;]r. According to Lemma 15, for each
i = 1,2 [s;]r is of the form (3;,Y;), for some subset Y/ C D#. Therefore
0(f,9) C B1UPBs and g € [s;]r implies

f S [[81]]T V [[Sg]]T = [[51 V SQ]]T. O

Proposition 19. Suppose f witnesses the failure of the inclusion t < s in
R(D, A) w.r.t. the valuation v. Then, for each subset T C D4 such T(f,t) C T,
| witnesses the failure of the inclusion t < s in the lattice R(D, A)r and w.r.t.
valuation vr.

Proof. As f witnesses t £ s in R(D, A), f € [t] and f & [s]. By Lemma 18 f €

[tlr- If f € [s]r, then [s]r C [s] (Lemma 14) implies f € [s], a contradicition.
Therefore f & [s]r, so f witnesses t £ s in R(D, A)r. O

5.3 Preservation of the failure in a finite lattice L(X, )

From now on, we suppose that 7' C D4 is finite and T'(f,t) C T with f witnessing
the failure of ¢ < s. Consider the sub-Boolean-algebra of P(A) generated by the
sets

{0(f,9) | f,geTYU{ANwv(x)|x € Vars(t,s)}. (6)

Let us call B this Boolean algebra (yet, notice the dependency of this definition
on T, as well as on ¢, s and v). It is well known that a Boolean algebra generated
by a finite set is finite.

Remark 20. If n = card(T) and m = card(Vars(t, s)), then B can have at most

925 4+m atoms. Tf we let k be the maximum of the sizes of ¢ and s, then,
for T = T(f,t), both n < k and m < 2k. We obtain in this case the over-

2
approximation 2 *=** on the number of atoms of B.
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Let us also recall that B is isomorphic to the powerset P(at(B)), where at(B) is
the set of atoms of B. Let i : P(at(B)) — P(A) be an injectve homomorphism
of Boolean algebras whose image is B. Since §(f, g) € B for every f,g € T, we
can transform the metric space (7,§) induced from (D%, §) into a metric space
(T, 0a¢(m)) whose distance takes values in the powerset algebra P(at(B)):

dae)(fr9) =B if and only if d(f,g) =1i(B).

Recall from Proposition 8 that there is a lattice embedding i, : L(T), dx(g)) —
L(T,¢), defined in the obvious way: i.(c,Y) = (i(5),Y).

Proposition 21. If f witnesses the failure of the inclusion t < s in R(D, A)
w.r.t. the valuation v, then the same inclusion fails in all the lattices L(T, day(m)),
where T is a finite set and T(f,t) CT.

Proof. By Proposition 19 the inclusion ¢ < s fails in the lattice R(D, A). This
lattice is isomorphic to the lattice L(7T}, §) via the map sending (a, X) € R(D, A)r
to (o, X N'T). Up to this isomorphism, it is seen that the (restriction to the
variables in ¢ and s of) the valuation vy takes values in the image of the lattice
L(T, 0a¢(m)) Via ix, so [t]r, [s]r belong to this sublattice and the inclusion fails
in this lattice, and therefore also in L(T, da¢(g))- O

6 Preservation of the failure in a finite lattice L(Sec,)

We have seen up to now that if ¢ < s fails in R(D, A), then it fails in many
lattices of the form L(T,d,g)). Yet it is not obvious a priori that any of these
lattices belongs to the variety generated by the relational lattices. We show in
this section that we can extend any T to a finite set G while keeping B fixed, so
that (G, d.(s)) is a pairwise-complete space over P(at(B)). Thus, the inclusion
t < s fails in the finite lattice L(G, d5¢(g)). Since (G, d(g)) is isomorphic to a
space of the form Sec, with 7 : F — at(B), the inclusion ¢ < s fails in a lattice
L(Sec,) which we have seen belongs to the variety generated by the relational
lattices. This also leads to construct a finite relational lattice R(at(B), F) in
which the equation ¢ < s fails. By following the chain of constructions, the sizes
of at(B) and F can also be estimated, leading to decidability of the equational
theory of relational lattices.

Definition 22. A glue of T and B is a function g € D* such that, for all
«a € at(B), there exists f € T with fla = g. We denote by G the set of all
functions that are glues of T and B.

Observe that T' C G and that G is finite, with
card(G) < card(T)card@HE)) (7)

In order to prove the following Lemma, let, for each o € at(B) and ¢ € G,
f(g,a) € T be such that gla = f(g,a)[a.

13



Lemma 23. If g1,92 € G, then 6(g1,92) € B.

Proof.

8(g1.92) = |J (@ndgg)) = |J (@nd(fgia), flg2,0)).

a€at(B) a€at(B)

Since §(f (g1, ), f(g2,@)) € B and « is an atom of B, each expression of the form
and(f(gr,a), f(g2,a)) is either () or a. It follows that §(g1,g2) € B. O

For a Boolean subalgebra B of P(A), we say that a subset T of D4 is pairwise-
complete relative to B if, for each f,g € T,

L. &(f,9) € B,
2. §(f,9) C BU~, implies §(f,h) C B and 6(h,g) C + for some h € T, for each

B,y € B.

Lemma 24. The set G is pairwise-complete relative to the Boolean algebra B.

Proof. Let f,g € G be such that §(f,g) C BU~. Let h € D be defined so that,
for each o € at(B), hla = fla if a € 8 and hla = gla, otherwise. Obviously,
heG.

Observe that o € § if and only if o C €, for each « € at(B), since 8 € B.
We deduce therefore hfa = fla if a € at(B) and a C 3% so f(a) = h(a) for
each a € ¢. Consequently 8¢ C Eq(f,h) and §(f, h) C B.

We also have hia = gla if @ € at(B) and a C ~¢. As before, this implies
0(h,g) C 7. Indeed, this is the case if @ C (3, by definition of h. Suppose now
that « € 3, so a C BSN~° = (BU~)". Since 6(f,g) C BU~, then a C 4(f,9)° =
Eq(f,g),1.e. fla = gla. Together with hla = fla (by definition of h) we obtain
hla = fla. a

We can finally bring together the observations developed so far and state our
main results.

Theorem 25. If an inclusion t < s fails in all the lattices R(D, A), then it fails
in a finite lattice R(E, A"), where card(A’) < 2P5) with k = max(size(t), size(s)),

2
p(k) = yﬁ%?’k, and card(FE) < size(t).

Proof. By Proposition 19 the inclusion ¢ < s fails in all the lattices R(D, A)p
where T'(f,t) C T. Once defined B as the Boolean subalgebra of P(A) generated
by the sets as in the display (6) (with T'=T(f,T)) and G as the set of glues of
T(f,t) and B as in Definition 22, the inclusion fails in R(D, A)g, since T(f,T) C
G, and then in L(G, d,g)) by Proposition 21. The condition that G is pairwise-
complete relative to B is equivalent to saying that the space (G, d,(g)) is pairwise-
complete. This space is therefore isomorphic to a space of the form Sec, for some
surjective 7 : F' — at(B), and ¢ < s fails in L(Sec,).

Equation (7) shows that, for each « € at(B), F,, = 7~ () has cardinality at
most card(T'(f,t)) and the size of ¢ is an upper bound for card(T'(f,t)). We can
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therefore embed the space Sec, into a space of the form (E2(®) §) with the size
of t an upper bound for card(E). The proof of Proposition 6 exhibits L(Sec,) as
a homomorphic image of a sublattice of L(E2(®), §) and therefore the inclusion
t < s also fails within L(E**(®) §) = R(E, at(B)). The upper bound on the size
of at(B) has been extimated in Remark 20. a

Remark 26. In the statement of the previous Theorem, the size of the lattice
R(E, A’) can be estimated out of the sizes of E and A’ considering that

P(EY) CR(E,A") C P(A'UEY).

p(k)
An upper bound for card(R(E, A”)) is therefore 2p(K)+K*" where p(k) is the
polynomial of degree 2 as in the statement of the Theorem and & is the maximum
of size(t), size(s).

A standard argument yields now:

Corollary 27. The equational theory of the relational lattices is decidable.

7 Conclusions

We argued that the equational theory of relational lattices is decidable. We
achieved this goal by giving a finite (counter)model construction of bounded
size.

Our result leaves open other questions that we might ask on relational lat-
tices. We mentioned in the introduction the quest for a complete axiomatic base
for this theory or, anyway, the need of a complete deductive system—so to de-
velop automatic reasoning for the algebra of relational lattices. As part of future
researches it is tempting to contribute achieving this goal using the mathematical
insights contained in the decidability proof.

Our result also opens new research directions, in primis, the investigation
of the complexity of deciding lattice-theoretic equations/inclusions on relational
lattices. Of course, the obvious decision procedure arising from the finite model
construction is not optimal; few algebraic considerations already suggest how
the decision procedure can be improved.

Also, it would be desirable next to investigate decidability of equational the-
ories in signatures extending of the pure lattice signature; many such extensions
are proposed in [17]. It is not difficult to adapt the present decidability proof so
to add to the signature the header constant.

A further interesting question is how this result translates back to the field
of multidimensional modal logic [15]. We pointed out in [22] how the algebra
of relational lattices can be encoded into multimodal framework; we conjecture
that our decidability result yields the decidability of some positive fragments of
well known undecidable logics, such as the products S5™ with n > 3. Moreover
connections need to be established with other existing decidability results in
modal logic and in database theory [1].

15



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1995.

N. Ackerman. Completeness in generalized ultrametric spaces. p-Adic Numbers
Ultrametric Anal. Appl., 5(2):89-105, 2013.

D. Caucal. On infinite transition graphs having a decidable monadic theory. The-
oret. Comput. Sci., 290(1):79-115, 2003.

E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377-387, June 1970.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, New York, 2002.

R. Dyckhoff and W. Tholen. Exponentiable morphisms, partial products and pull-
back complements. J. Pure Appl. Algebra, 49(1-2):103-116, 1987.

R. Freese, J. Jezek, and J. Nation. Free lattices. Providence, RI: American Math-
ematical Society, 1995.

D. M. Gabbay. Selective filtration in modal logic. I. Semantic tableaux method.
Theoria, 36:323-330, 1970.

G. Gratzer. General Lattice Theory. Birkhaduser Verlag, Basel, 1998. New ap-
pendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P.
Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and R.
Wille.

R. Hammack, W. Imrich, and S. Klavzar. Handbook of Product Graphs. CRC
Press, Inc., Boca Raton, FL, USA, 2nd edition, 2011.

R. Hirsch and I. Hodkinson. Representability is not decidable for finite relation
algebras. Trans. Amer. Math. Soc., 353:1403—-1425, 2001.

R. Hirsch, I. Hodkinson, and A. Kurucz. On modal logics between K x K x K and
S5 x S5 x S5. The Journal of Symbolic Logic, 67:221-234, 3 2002.

W. Imrich and S. Klavar. Product graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York, 2000. Structure
and recognition, With a foreword by Peter Winkler.

B. Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.
A. Kurucz. Combining modal logics. In J. V. B. Patrick Blackburn and F. Wolter,
editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Rea-
soning, pages 869 — 924. Elsevier, 2007.

F. W. Lawvere. Metric spaces, generalized logic and closed categories. Rendiconti
del Seminario Matematico e Fisico di Milano, XLIII:135-166, 1973.

T. Litak, S. Mikulés, and J. Hidders. Relational lattices: From databases to univer-
sal algebra. Journal of Logical and Algebraic Methods in Programming, 85(4):540
— 573, 2016.

R. Maddux. The equational theory of C'As is undecidable. The Journal of Symbolic
Logic, 45(2):311-316, 1980.

M. Pouzet. Une approche métrique de la rétraction dans les ensembles ordonnés
et les graphes. In Proceedings of the conference on infinitistic mathematics (Lyon,
1984), pages 59-89. Publ. Dp. Math. Nouvelle Sér. B, 85-2, Univ. Claude-Bernard,
Lyon, 1985.

S. Priess-Crampe and P. Ribemboim. Equivalence relations and spherically com-
plete ultrametric spaces. C. R. Acad. Sci. Paris, 320(1):1187-1192, 1995.

16



21.

22.

23.

24.

25.

26.

L. Santocanale. A duality for finite lattices. Preprint, available from
http://hal.archives-ouvertes.fr/hal-00432113, Sept. 2009.

L. Santocanale. Relational lattices via duality. In I. Hasuo, editor, Coalgebraic
Methods in Computer Science, CMCS 2016, volume 9608 of Lecture Notes in Com-
puter Science, pages 195-215. Springer, 2016.

L. Santocanale. Embeddability into relational lattices is undecidable. In P. Hofner,
D. Pous, and G. Struth, editors, Relational and Algebraic Methods in Computer
Science - 16th International Conference, RAMiCS 2017, Lyon, France, May 15-18,
2017, Proceedings, volume 10226 of Lecture Notes in Computer Science, pages 258—
273, 2017. Long version available at https://hal.archives-ouvertes.fr/hal-01474822.
L. Santocanale and F. Wehrung. The equational theory of the weak order on finite
symmetric groups. 41 pages, Sept. 2014.

M. Spight and V. Tropashko. Relational lattice axioms. Preprint available from
http://arxiv.org/abs/0807.3795, 2008.

V. Tropashko. Relational algebra as non-distributive lattice. Preprint, available
from http://arxiv.org/abs/cs/0501053, 2006.

17



