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Abstract. We present the first internal calculi for Lewis’ conditional logics charac-
terized by uniformity and reflexivity, including non-standard internal hypersequent
calculi for a number of extensions of the logic VTU. These calculi allow for syn-
tactic proofs of cut elimination and known connections to S5. We then introduce
standard internal hypersequent calculi for all these logics, in which sequents are en-
riched by additional structures to encode plausibility formulas as well as diamond
formulas. These calculi provide both a decision procedure for the respective logics
and constructive countermodel extraction from a failed proof search attempt.

1 Introduction

Conditional logics have a long history going back, e.g., to the works of Stalnaker, Lewis,
Nute, Chellas, Burgess, Pollock in the 60’s-70’s [18,13,14,4,3]. In his seminal works
Lewis proposed a formalization of conditional logics to capture counterfactual and other
hypothetical conditionals that cannot be accommodated by the material implication of
classical logic [13]. Conditional logics have since found an interest in several fields of
knowledge representation, from reasoning about prototypical properties and nonmono-
tonic reasoning [9] to modeling belief change. A successful attempt to relate conditional
logic and belief update (as opposite to belief revision) was carried out by Grahne [8],
who established a precise mapping between belief update operators and Lewis’ logic
VCU. The relation is expressed by the so-called Ramsey’s Rule:

A ◦ B→ C holds if and only if A→ (B� C) holds

where the operator ◦ is any update operator satisfying Katsuno and Mendelzon’s pos-
tulates. The relation means that C is entailed by “A updated by B” if and only if the
conditional B � C is entailed by A. In this sense it can be said that the conditional
B� C expresses an hypothetical update of a piece of information A.

The family of logics studied by Lewis in [13] is semantically characterized by sphere
models, where each world x is equipped with a set of nested sets of worlds SP(x). Each
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set in SP(x) is called a sphere: the intuition is that concerning x, worlds in inner spheres
are more plausible than worlds belonging only to outer spheres. Lewis takes as primitive
the comparative plausibility connective 4, with a formula A 4 B meaning “A is at least
as plausible as B”. The conditional A� B is then defined as “A is impossible or A∧¬B
is less plausible than A”. Vice versa, 4 can be defined in terms of�.

In this paper we continue our proof-theoretic investigation of the family of Lewis’
logics, concentrating on the logics characterized by two properties: (i) Uniformity: all
worlds have the same set of accessible worlds, where the worlds accessible from a
world x are those belonging to any sphere α ∈ SP(x); (ii) Total reflexivity: every world
x belongs to some sphere α ∈ SP(x). The basic logic is VTU; we will then consider
some of its extensions, including the above mentioned VCU. It is worth mentioning that
equivalent logics are those of Comparative Concept Similarity studied in the context of
ontologies [17]. These logics contain a connective⇔, which allows to express, e.g,

PicassoPainting v BraquePainting⇔ GiottoPainting

asserting that “Picasso’s paintings are more similar to Braque’s paintings than to Giotto’s
ones”. The semantics is provided in terms of Distance Space Models, defined as a set
of worlds equipped with a distance function. It turns out that the basic logic of Com-
parative Concept Similarity coincides with Lewis’ logic VWU and the one defined by
“minspace” Distance Models coincides withVCU, so that Distance Space Models provide
an alternative simple and natural semantics for conditional logics with uniformity [17,1].

Here we investigate internal calculi for logics extending VTU, i.e., calculi where
each configuration of a derivation corresponds to a formula of the corresponding logic,
in contrast to external calculi which make use of extra-logical elements (such as labels,
terms and relations on them). Ideally, we seek calculi with the following features: (i)
they should be standard, i.e., each connective is handled by a finite set of rules with a
finte and fixed set of premises; (ii) they should be modular, i.e., it should be possible
to obtain calculi for stronger logics by adding independent rules to a base calculus;
(iii) they should have good proof-theoretical properties, such as a syntactic proof of cut
admissibility; finally (iv) they should provide a decision procedure for the respective
logics. In our opinion requirement (i) is particularly important: a standard calculus
provides a self-explanatory presentation of the logic, thus a kind of proof-theoretic
semantics.

In previous work [7], we defined calculi with many of these properties for weaker
logics of the Lewis’ family. For the logics with uniformity to the best of our knowledge
no internal calculi are known; the only known external calculi for these adopt a hybrid
language and a relational semantics [6]. We also consider logics with absoluteness, a
property stronger than uniformity stating that all worlds have the same system of spheres.
It is unlikely that sequents, even extended as in [7], are sufficient to capture logics with
uniformity: Since modal logic S5 can be embedded into VTU, a sequent calculus for
the latter would most probably also yield a sequent calculus for S5. The existence of
such a calculus, however, would be very surprising. We therefore adopt the framework
of hypersequents [2], where the basic objects are multisets of sequents.

We first provide a non-standard hypersequent calculus for VTU and its extensions
and syntactically prove cut-elimination and hence completeness. We then show that by



translating �A as ⊥ 4 ¬A the calculi - restricted to such formulas - correspond to known
hypersequent calculi for S5. Further, we construct standard calculi for all the logics by
enriching the hypersequents with additional structural connectives encoding plausibility
and “possible” formulas respectively. The obtained standard calculi provide decision
procedures for the respective logics. Finally, we give a direct semantic completeness
proof for the logics without absoluteness, by considering the invertible version of the
rules and constructing a countermodel from a failed attempt at proof search. Thus, the
calculi can also be used for countermodel generation, a task of independent interest.

2 Preliminaries

We consider the conditional logics of [13]. The set of conditional formulae is given by
A ::= p | ⊥ | A → A | A 4 A, where p ∈ V is a propositional variable. We define the
boolean connectives ∧,∨,> in terms of ⊥ and→ as usual. Intuitively, a formula A 4 B
is interpreted as “A is at least as plausible as B”. Lewis’ counterfactual implication�
is defined by A� B ≡ (⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 A), whereas the outer modality � is
defined by �A ≡ (⊥ 4 ¬A). The logics we consider are defined as follows:

Definition 1. A universal sphere model (or model) is a triple 〈W,SP, ~. �〉, consisting
of a non-empty set W of elements, called worlds, a mapping SP : W → 22W

, and a
propositional valuation ~. � : V → 2W . Elements of SP(x) are called spheres. We
assume the following conditions:

– for every α ∈ SP(w) we have α , ∅ (non-emptiness)
– for every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α (sphere nesting)
– for all w ∈ W we have SP(w) , ∅ (normality)
– for all w ∈ W we have w ∈

⋃
SP(w) (total reflexivity)

– for all w, v ∈ W we have
⋃

SP(w) =
⋃

SP(v) (uniformity)

The valuation ~. � is extended to all formulae by: ~⊥� = ∅; ~A→ B� = (W −~A�)∪~B�;
~A 4 B� = {w ∈ W | for all α ∈ SP(w). if ~B� ∩ α , ∅, then ~A� ∩ α , ∅}. We also
write w  A instead of w ∈ ~A� as well as α ∀ A for ∀x ∈ α. x  A and α ∃ A for
∃x ∈ α. x  A4. Validity and satisfiability of formulae in a class of models are defined as
usual. Conditional logic VTU is the set of formulae valid in all universal sphere models.

Extensions of VTU are defined by additional conditions on the class of models, namely:

– weak centering: for all α ∈ SP(w) we have w ∈ α
– centering: for all w ∈ W we have {w} ∈ SP(w);
– absoluteness: for all w, v ∈ W we have SP(w) = SP(v).

Extensions of VTU are denoted by concatenating letters for these properties:W for weak
centering, C for centering, and A for absoluteness. We consider the following systems5:

4 Using this notation we thus have: x  A 4 B iff for all α ∈ SP(x). α ∀ ¬B or α ∃ A.
5 Observe that VTA+weak centering collapses to S5, since in any model over a set of worlds W

it must be for all w ∈ W, SP(w) = {W}. Furthermore, VTA + centering collapses to Classical
Logic, as in any model the set of worlds must be a singleton {w} and SP(w) = {{w}}, so that
A 4 B is equivalent to the material implication B→ A. See also Prop. 16 below.



(CPR) ` B→ A
` A 4 B

(CPA) (A 4 A ∨ B) ∨ (B 4 A ∨ B)

(TR) (A 4 B) ∧ (B 4 C)→ (A 4 C) (CO) (A 4 B) ∨ (B 4 A)
(N) ¬(⊥ 4 >) (T) (⊥ 4 ¬A)→ A
(U1) ¬(⊥ 4 A)→ (⊥ 4 (⊥ 4 A)) (U2) (⊥ 4 ¬A)→ (⊥ 4 ¬(⊥ 4 ¬A))
(W) A→ (A 4 >) (C) (A 4 >)→ A
(A1) (A 4 B)→

(
⊥ 4 ¬(A 4 B)

)
(A2) ¬(A 4 B)→

(
⊥ 4 (A 4 B)

)
AVTU := {(CPR), (CPA), (TR), (CO), (N), (T), (U1), (U2)}

AVWU := AVTU ∪ {(W)} AVCU := AVTU ∪ {(W), (C)} AVTA := AVTU ∪ {(A1), (A2)}

AVWA := AVTU ∪ {(W), (A1), (A2)} AVCA := AVTU ∪ {(W), (C), (A1), (A2)}

Table 1. Lewis’ logics and axioms.

VTU VTA: VTU + absoluteness
VWU: VTU + weak centering VWA: VTA + weak centering
VCU: VTU + centering VCA: VTA + centering

These logics can be characterized by axioms in a Hilbert-style system [13, Chp. 6]. The
modal axioms in the language with only the comparative plausibility operator are given
in Table 1 (∨ and ∧ bind stronger than 4). Propositional axioms and rules are standard.

3 Hypersequent calculi

In this section we introduce calculi for VTU and extensions. We call a calculus standard
if a) it has a finite number of rules and b) each rule has a finite and fixed number of
premisses. With respect to this definition, the calculi introduced in this section are
non-standard, whereas the calculi we introduce in Section 6 are standard.

Our calculi are based on hypersequents, where as usual a sequent is a pair consisting
of two multisets of formulae, written as Γ ⇒ ∆.

Definition 2. A hypersequent is a non-empty multiset of sequents, written Γ1 ⇒ ∆1 |

. . . | Γn ⇒ ∆n, where n ≥ 1 is the cardinality of the multiset. The conditional formula
interpretation of a hypersequent is

ι4(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) := � (
∧
Γ1 →

∨
∆1) ∨ · · · ∨ � (

∧
Γn →

∨
∆n)

where � is the outer modality defined by �A ≡ (⊥ 4 ¬A).

The rules of the calculi HL extend the calculi from [12] to the hypersequent setting
and are given in Fig. 1. These calculi are non-standard, meaning that the rules have
an unbounded number of premisses. We abbreviate multisets of formulae Ak, . . . , An to
[A]n

k , and Ck 4 Dk, . . . ,Cn 4 Dn to [C 4 D]n
k with the convention that [A]n

k is empty if
k > n. The crucial rule for uniformity is the rule trfm. Intuitively it unpacks a number of
comparative plausibility formulae behaving like boxed formulae on the left hand side
of a component in the conclusion into a different component in the rightmost premiss,



G | Γ, p⇒ p, ∆ init
G | Γ,⊥ ⇒ ∆

⊥L
G | Γ, A, A⇒ ∆

G | Γ, A⇒ ∆
ICL

G | Γ ⇒ A, A, ∆
G | Γ ⇒ A, ∆ ICR

G | Γ, B⇒ ∆ G | Γ ⇒ A, ∆
G | Γ, A→ B⇒ ∆

→L
G | Γ, A⇒ B, ∆
G | Γ ⇒ A→ B, ∆

→R

{ G | Σ ⇒ Π | Ck ⇒ [D]k−1
1 , [A]n

1 : k ≤ m } ∪ { G | Σ ⇒ Π | Bk ⇒ [D]m
1 , [A]n

1 : k ≤ n }

G | Σ, [C 4 D]m
1 ⇒ [A 4 B]n

1, Π
Rm,n

{ G | Σ ⇒ Π | Ω⇒ Θ | Ck ⇒ [D]k−1
1 : k ≤ m } ∪ { G | Σ ⇒ Π | Ω⇒ [D]m

1 , Θ }

G | Σ, [C 4 D]m
1 ⇒ Π | Ω⇒ Θ

trfm

{ G | Σ ⇒ Π | Ck ⇒ [D]k−1
1 : k ≤ m } ∪ { G | Σ ⇒ [D]m

1 , Π }

G | Σ, [C 4 D]m
1 ⇒ Π

Tm

{ G | Σ ⇒ Π | Ck ⇒ [D]k−1
1 , [A]n

1 : k ≤ m } ∪ { G | Σ ⇒ [D]m
1 , [A]n

1, Π }

G | Σ, [C 4 D]m
1 ⇒ [A 4 B]n

1, Π
Wm,n

G | Σ,C ⇒ Π G | Σ ⇒ D, Π
G | Σ,C 4 D⇒ Π

RC
G | Σ ⇒ A, Π
G | Σ ⇒ A 4 B, Π

RW
G | Σ, Γ ⇒ Π, ∆ | Ω⇒ Θ

G | Σ ⇒ Π | Ω, Γ ⇒ Θ, ∆
spl

G | Σ ⇒ Π | Ω,C 4 D⇒ Θ

G | Σ,C 4 D⇒ Π | Ω⇒ Θ
absL

G | Σ ⇒ Π | Ω⇒ A 4 B, Θ
G | Σ ⇒ A 4 B, Π | Ω⇒ Θ

absR

HVTU : {init,⊥L, ICL, ICR,→L,→R} ∪ {Rm,n : m ≥ 0, n ≥ 1} ∪ {trfm : m ≥ 1} ∪ {Tm : m ≥ 1}

HVWU : HVTU ∪ {Wm,n : m + n ≥ 1} HVCU : HVTU ∪ {RC ,RW }

HVTA : HVTU ∪ {absL, absR} HVWA : HVWU ∪ {absL, absR} HVCA : HVCU ∪ {absL, absR, spl}

Fig. 1. The hypersequent calculi for VTU and extensions.

most clearly seen in the case of n = 1. The leftmost set of premisses ensures that the
comparative plausibility formulae indeed behave like boxed formulae. The rule Tm is the
local version of trfm, and essentially captures total reflexivity.

Lemma 3. For L any of the considered logics, the calculus HL is sound for L.

Proof. This follows from validity of �A→ A in all the logics and the fact that the rules
preserve soundness with respect to ι. The latter is shown for each rule by constructing a
countermodel for one of the premisses from a countermodel for the conclusion, using that
the sphere system is universal. For all the rules apart from trf, absL, absR, spl this follows
as in [12], using that �A→ ��A is valid. For absL, absR this follows straightforwardly
from absoluteness, and for spl this follows from the fact that frames for VCA are
degenerate in the sense that SP(w) = {{w}} for every world w (see footnote 5).

For the rule trf, letM = 〈W,SP, ~. �〉 be a VTU model, let w ∈ W, and suppose that

M,w |= ¬ι(G) ∧ ♦
(∧

Σ ∧
∧m

i=1(Ci 4 Di) ∧ ¬
∨
∆
)
∧ ♦ (

∧
Ω ∧ ¬

∨
Θ) . (1)

Then in particular M,w |= ¬ (ι(G) ∨ � (
∧
Σ → Π) ∨ � (∧Ω→ Θ)). Furthermore, sup-

pose that for every k ≤ m we have

M,w |= ι(G) ∨ � (
∧
Σ →

∨
Π) ∨ � (

∧
Ω→

∨
Θ) ∨ �

(
Ck →

∨k−1
i=1 Di

)
. (2)



G | Γ ⇒ ∆

G | Γ, Σ ⇒ ∆,Π
IW

G

G | ⇒
EW

G | Γ ⇒ ∆ | Σ ⇒ Π

G | Γ, Σ ⇒ ∆,Π
mrg

Fig. 2. The structural rules of internal and external weakening and merge.

Then from the case k = 1 of (2) we obtainM,w |= �¬C1. From this together with (1)
and the fact that for every v ∈

⋃
SP(w) we have

⋃
SP(v) =

⋃
SP(w) we then obtain

M,w |= �¬D1. Similarly, using the case k = 2 of (2) we get M,w |= �¬D2 and
continuing like this we get M,w |= �¬D1 ∧ · · · ∧ �¬Dm. Together with (1) this gives
M,w |= ¬ι(G) ∧ ♦ (

∧
Σ ∧ ¬

∨
Π) ∧ ♦ (∧Ω ∧ ¬ (D1 ∨ · · · ∨ Dm ∨

∨
Θ)) and hence we

have a countermodel for the remaining premiss. ut

By induction on the formula complexity we straightforwardly obtain:

Lemma 4. For every formula A we have HL ` G | Γ, A⇒ A, ∆.

As usual, a rule is admissible in HL if whenever the premisses are derivable in HL,
then so is its conclusion. It is depth-preserving admissible, if the depth of the derivation
of its conclusion is at most the maximal depth of the derivations of its premisses.

Lemma 5. The rules IW,EW,mrg from Fig. 2 are depth-preserving admissible in HL.

Proof. By induction on the depth of the derivation in all cases. For mrg, if the last
applied rule was trfm, we might need to replace it with Tm. ut

Observe that from admissibility of mrg using the internal contraction rules we also
immediately obtain admissibility of the external contraction rules, i.e., contraction on
hypersequent components. We first show completeness of the systems with the cut rule:

G | Γ ⇒ ∆, A H | A, Σ ⇒ Π

G | H | Γ, Σ ⇒ ∆,Π
cut

Cut-free completeness then will follow from cut elimination. In the following we write
HLcut for the system HL with the cut rule.

Lemma 6 (Completeness with cut). For L one of the considered logics the calculus
HLcut is complete for L, i.e., whenever A ∈ L, then HLcut ` ⇒ A.

Proof. By deriving the axioms and using cut to simulate modus ponens and the rule
(CPR). The interesting cases are the axioms (U1), (U2) for uniformity and (A1), (A2)
for absoluteness. The derivation for (U1) is as follows:

⇒ | A⇒ ⊥ | ⇒ ⊥ | ⊥ ⇒
⊥L

⇒ | A⇒ A,⊥ | ⇒ ⊥ Lem. 4

⇒ | A⇒ ⊥ | ⊥ 4 A⇒ ⊥
trf1

⇒ ⊥ 4 A | ⊥ 4 A⇒ ⊥
R0,1

⇒ ⊥ 4 A,⊥ 4 (⊥ 4 A)
R0,1

⇒ ¬(⊥ 4 A)→ (⊥ 4 (⊥ 4 A))
¬L,→R

The derivations of the remaining axioms are similar, using the rules absL, absR in the
case of absoluteness. ut



4 Cut elimination

To obtain cut-free completeness for all systems we now give a syntactic proof of cut
elimination. For this, in the presence of absoluteness we consider slightly extended
calculi containing also versions of the rules Wm,n,RC ,RW where absoluteness is built in:

{ G | Σ ⇒ Π | Ω⇒ Θ | Ck ⇒ [D]k−1
1 , [A]n

1 : k ≤ m }
∪ { G | Σ ⇒ Π | Ω⇒ [D]m

1 , [A]n
1, Θ }

G | Σ, [C 4 D]m
1 ⇒ [A 4 B]n

1, Π | Ω⇒ Θ
Wabs

m,n

G | Σ ⇒ Π | Ω,C ⇒ Θ G | Σ ⇒ Π | Ω⇒ D, Θ
G | Σ,C 4 D⇒ Π | Ω⇒ Θ

Rabs
C

G | Σ ⇒ Π | Ω⇒ A, Θ
G | Σ ⇒ A 4 B, Π | Ω⇒ Θ

Rabs
W

Since these are derivable using the original version of the rule followed by applications
of absL, absR, cut elimination in the extended system entails cut elimination in the
original system. As can be expected, due to the presence of contraction cut elimination in
a hypersequent system is rather more involved than in the sequent case of [12]. Moreover,
due to the form of the absoluteness rules we cannot simply apply the general results
of [11], although the strategy for the cut elimination proof is the same: Intuitively,
an application of the cut rule (shown before Lem. 6) with cut formula of maximal
complexity is permuted up in the derivation of the left premiss, where applications of
contraction are swallowed up in a more general induction hypothesis, until an occurrence
of the cut formula is principal (Lem. 10). Then essentially the fact that contractions can
be permuted above logical rules is used to obtain a single occurrence of the cut formula
in the left premiss of the cut, and the cut is permuted up in the right premiss. Again,
contractions are swallowed up by a generalised induction hypothesis, and once the cut
formula becomes principal in the last applied rule, its complexity is reduced (Lem. 9).
For technical reasons we also include the rule mrg in the calculus when proving cut
elimination. By Lem. 5 it is clear that all applications of this rule can then be eliminated
in the cut-free system. In the following we write H∗

L
for the system HL with cut,mrg

and with the rules Wabs
m,n ,R

abs
C ,Rabs

W where applicable, and abbreviate A, . . . , A︸   ︷︷   ︸
n-times

to An.

Definition 7. The cut rank of a H∗
L

-derivation D is the maximal complexity of a cut
formula occurring inD, written ρ(D). A rule is cut-rank preserving admissible in H∗

L
if

whenever its premiss(es) are derivable in H∗
L

with cut-rank n, then so is its conclusion.

Lemma 8. The rules EW, IW are depth- and cut-rank preserving admissible in H∗
L

.

Proof. Standard induction on the depth of the derivation. ut

Lemma 9 (Shift Right). Suppose that for k > 0 and n1, . . . , nk > 0 there are H∗
L

-
derivations D1 and D2 of G | Ω ⇒ Θ, A and H | An1 , Ξ1 ⇒ Υ1 | . . . | Ank , Ξk ⇒ Υk

with ρ(D1) < |A| > ρ(D2) and such that the displayed occurrence of A is principal in
the last rule application inD1. Then there is a H∗

L
-derivationD with endhypersequent

G | H | Ω,Ξ1 ⇒ Θ,Υ1 | . . . | Ω,Ξk ⇒ Θ,Υk and ρ(D) < |A|.

Proof. By induction on the depth of D2. If none of the displayed occurrences of A is
principal in the last rule inD2, we apply the induction hypothesis on the premiss(es) of



that rule, followed by the same rule (and possibly structural rules). If at least one of the
displayed occurrences is principal in the last rule inD2, we distinguish cases according
to the last applied rule inD1, with subcases according to the last rule inD2. For space
reasons we only consider an exemplary case, the remaining cases are similar. Suppose
the last rules inD1 andD2 are Rm,n+1 and trfs respectively, that A is the formula E 4 F
and thatD1 ends in:{
G | Ω⇒ Θ | C j ⇒ [D] j−1

1 , [A]n
1, E : 1 ≤ j ≤ m

}
∪

{
G | Ω⇒ Θ | B j ⇒ [D]m

1 , [A]n
1, E : 1 ≤ j ≤ n

}
∪

{
G | Ω⇒ Θ | F ⇒ [D]m

1 , [A]n
1, E

}
G | Ω, [C 4 D]m

1 ⇒ [A 4 B]n
1, E 4 F, Θ

Rm,n+1

First we apply the induction hypothesis to the conclusion of this and the premisses of
trfs to eliminate all the occurrences of E 4 F from the context. Hence we assume that
the only occurrences of E 4 F in the conclusion of trfs are principal and thatD2 ends in:{
H | Ξ ⇒ Υ | Σ ⇒ Π | G j ⇒ [H] j−1

1 : 1 ≤ j ≤ r
}
∪

{
H | Ξ ⇒ Υ | Σ ⇒ Π | E ⇒ [H]r

1

}
∪

{
H | Ξ ⇒ Υ | Σ ⇒ Π | G j ⇒ [H] j−1

1 , F : r < j ≤ s
}
∪

{
H | Ξ ⇒ Υ | Σ ⇒ Π, [H]s

1, F
}

H | Ξ, [G 4 H]r
1, E 4 F, [G 4 H]s

r+1 ⇒ Υ | Σ ⇒ Π
trfs

with E 4 F not occurring in [G 4 H]r
1. Cuts on the formulae E and F then yield:{

H | Ξ ⇒ Υ | Σ ⇒ Π | G j ⇒ [H] j−1
1 : 1 ≤ j ≤ r

}
∪

{
G | H | Ω⇒ Θ | Ξ ⇒ Υ | Σ ⇒ Π | C j ⇒ [D] j−1

1 , [A]n
1, [H]r

1 : 1 ≤ j ≤ m
}

∪
{
G | H | Ω⇒ Θ | Ξ ⇒ Υ | Σ ⇒ Π | B j ⇒ [D]m

1 , [A]n
1, [H]r

1 : 1 ≤ j ≤ n
}

∪
{
G | H | Ω⇒ Θ | Ξ ⇒ Υ | Σ ⇒ Π | G j ⇒ [H] j−1

1 , [D]m
1 , [A]n

1, [H]r
1 : r < j ≤ s

}
Admissibility of internal weakening (Lem. 8) and an application of Rm+s,n+t then gives:

G | H | Ω, [G 4 H]r
1, [C 4 D]m

1 , [G 4 H]s
r+1 ⇒ [A 4 B]n

1, [I 4 J]t
1, Θ | Ξ ⇒ Υ

Iterating this process to eliminate the remaining occurrences of E 4 F from [G 4 H]s
r+1,

followed by mrg and applications of contraction then yields the desired sequent. ut

Lemma 10 (Shift Left). Suppose that for k > 0 and n1, . . . , nk > 0 there are H∗
L

-
derivations D1 and D2 of the hypersequents G | Ω1 ⇒ Θ1, An1 | . . . | Ωk ⇒ Θk, Ank

and H | A, Ξ ⇒ Υ with ρ(D1) < |A| > ρ(D2). Then there is a H∗
L

-derivation D with
endsequent G | H | Ω1, Ξ ⇒ Θ1, Υ | . . . | Ωk, Ξ ⇒ Θk, Υ and ρ(D) < |A|.

Proof. By induction on the depth of D1. If none of the displayed occurrences of A is
principal in the last rule in D1 or the active formula of absR, we apply the induction
hypothesis on the premiss(es) of the last rule in D1 followed by the same rule and
possibly admissibility of weakening and contraction. If one of the occurrences of A
is active in absR, we use admissibility of EW (Lem. 8) and absL on D2 to obtain
H | Ξ ⇒ Υ | A ⇒ . Then the induction hypothesis on this and the premiss of absR

followed by mrg and IW yields the result. If an occurrence of A is principal in the last
rule in D1, we use the induction hypothesis to remove all the occurrences of A in the
context of that rule. Then, in case this rule is Rm,n,Wm,n,Wabs

m,n , we apply contraction in
the premisses and apply the same rule, so that only one occurrence of A is principal.
Now Lem. 9 yields the result. ut



Theorem 11 (Cut Elimination). Let L ∈ {VTU,VWU,VCU,VTA,VWA,VCA}. If a
hypersequent is derivable in H∗

L
, then it is derivable in HL.

Proof. First we eliminate all applications of cut by induction on the tuples 〈ρ(D), ](D)〉
under the lexicographic ordering, where ](D) is the number of applications of cut
in D with cut formula of complexity ρ(D). Then applications of Wabs

m,n ,R
abs
C ,Rabs

W are
replaced with the Wm,n,RC ,RW and absL, absR, and mrg is eliminated using Lem. 5. It
is straightforward to check that applications of Wabs

m,n ,R
abs
C ,Rabs

W are only introduced in
systems including the absoluteness rules. ut

Corollary 12 (Cut-free completeness). If A ∈ L, then HL ` ⇒ A.

5 Connections to modal logic

The constructed hypersequent calculi provide purely syntactical proofs of results from [13]
connecting the conditional logics to, e.g., modal logic S5. We write L� for the modal
fragment of a conditional logic L, i.e., the fragment where comparative plausibility
formulae are restricted to the shape (⊥ 4 ¬A), and we write A� for the result of replacing
every subformula ⊥ 4 ¬B of A with �B. The proofs use the fact that the hypersequent
calculus HS5 with the propositional rules of Fig. 1, the structural rules and the rules

G | Γ ⇒ �A, ∆ | ⇒ A
G | Γ ⇒ �A, ∆

�R
G | Γ,�A⇒ ∆ | Σ, A⇒ Π

G | Γ,�A⇒ ∆ | Σ ⇒ Π
�L

G | Γ,�A, A⇒ ∆

G | Γ,�A⇒ ∆
T

is cut-free complete for S5 [16], see also [11].

Lemma 13. If A� ∈ S5, then A ∈ L� for each of the logics L considered here.

Proof. By translating HS5-derivations into HL-derivations. E.g., �L is translated into:

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ ⇒ Π | ¬ ⇒
⊥L

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ, A⇒ Π

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ ⇒ ¬A, Π
¬L

G | Γ,⊥ 4 ¬A,⊥ 4 ¬A⇒ ∆ | Σ ⇒ Π
trf1

G | Γ,⊥ 4 ¬A⇒ ∆ | Σ ⇒ Π
ICL

The translations of �R,T are similar, using R0,1 and T1 respectively. ut

The backwards direction is similar, but translates into the calculus HS5 above with a
form of Avron’s modal splitting rule from [2]:

G | Γ ⇒ ∆ | Σ,�Ω⇒ �Θ,Π

G | Γ,�Ω⇒ �Θ, ∆ | Σ ⇒ Π
MS

It is straightforward to check that the resulting calculus is sound for S5.

Lemma 14. If L , VCA and A ∈ L�, then A� ∈ S5.



Proof. By translating derivations in HL into derivations in HS5cut and applying cut
elimination. In particular, an application of the rule Rm,n{

G | Γ ⇒ ∆ | ⊥ ⇒ ¬D1, . . . ,¬D j−1,⊥
n : 1 ≤ j ≤ m

}
∪

{
G | Γ ⇒ ∆ | ¬B j ⇒ ¬D1, . . . ,¬Dm,⊥

n : 1 ≤ j ≤ n
}

G | Γ,⊥ 4 ¬D1, . . . ,⊥ 4 ¬Dm ⇒ ⊥ 4 ¬B1, . . . ,⊥ 4 ¬Bn, ∆
Rm,n

is translated into

G | Γ ⇒ ∆ | ¬B1 ⇒ ¬D1, . . . ,¬Dm,⊥
n

G | Γ,�D1, . . . ,�Dm ⇒ �B1, ∆ | ¬B1 ⇒ ¬D1, . . . ,¬Dm,⊥
n IW

G | Γ,�D1, . . . ,�Dm ⇒ �B1, ∆ | D1, . . . ,Dm ⇒ B1
prop

G | Γ,�D1, . . . ,�Dm ⇒ �B1, ∆
�L,�R

G | Γ,�D1, . . . ,�Dm ⇒ �B1, . . . ,�Bn, ∆
IW

Here prop uses derivability of the inversions of the propositional rules using cut. Sim-
ilarly, applications of Tm and trfm are translated using m applications of �L and T
respectively. Applications of Wm,n and RC are translated by T, and RW is replaced with
weakening, using that whenever G | Γ ⇒ ∆,⊥ is derivable in the system for S5, then so
is G | Γ ⇒ ∆. Finally, absL, absR are replaced with the modalised splitting rule MS . ut

Theorem 15 ([13, Sec. 6.3]). Let L , VCA. Then A ∈ L� iff A� ∈ S5.

The proof of the previous theorem is immediate from the preceeding lemmas. It is
then also straightforward to derive the known collapses of the counterfactual implication
� in VWA and VCA. Recall that A� B ≡ (⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 A).

Proposition 16. 1. HVWA ` ⇒ (A� B)↔ �(A→ B)
2. HVCA ` ⇒ A↔ �A
3. HVCA ` ⇒ (A� B)↔ (A→ B) and HVCA ` ⇒ (A 4 B)↔ (B→ A).

6 Standard calculi

To convert the non-standard calculi HL into standard calculi, we consider an extended
notion of sequents, where the succedent contains additional structural connectives. These
sequents extend those of [7,15] with a connective 〈.〉 interpreting possible formulae.

Definition 17. A conditional block is a tuple [Σ C C] containing a multiset Σ of formu-
lae and a single formula C. A transfer block is a multiset of formulae, written 〈Θ〉. An
extended sequent is a tuple Γ ⇒ ∆ consisting of a multiset Γ of formulae and a multiset ∆
containing formulae, conditional blocks, and transfer blocks. An extended hypersequent
is a multiset containing extended sequents, written Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

The formula interpretation of an extended sequent is (all blocks shown explicitly):

ιe(Γ ⇒ ∆, [Σ1 C C1] , . . . , [Σn C Cn] , 〈Θ1〉 , . . . , 〈Θm〉)
:=

∧
Γ →

∨
∆ ∨

∨n
i=1

∨
B∈Σi

(B 4 Ci) ∨
∨m

j=1 ♦(
∨
Θ j)



G | Γ ⇒ ∆, [A C B]
G | Γ ⇒ ∆, A 4 B

4R
G | Γ ⇒ ∆, [B, Σ C C] G | Γ ⇒ ∆, [Σ C A]

G | Γ, A 4 B⇒ ∆, [Σ C C]
4L

G | Γ ⇒ ∆, [Σ1, Σ2 C A] G | Γ ⇒ ∆, [Σ1, Σ2 C B]
G | Γ ⇒ ∆, [Σ1 C A] , [Σ2 C B]

com
G | Γ ⇒ ∆ | A⇒ Σ

G | Γ ⇒ ∆, [Σ C A]
jump

G | Γ ⇒ ∆ | A⇒ Θ G | Γ ⇒ ∆, 〈Θ, B〉
G | Γ, A 4 B⇒ ∆, 〈Θ〉

T

G | Γ ⇒ ∆, 〈⊥〉

G | Γ ⇒ ∆
intrf

G | Γ ⇒ ∆ | Σ ⇒ Θ,Π

G | Γ ⇒ ∆, 〈Θ〉 | Σ ⇒ Π
jumpU

G | Γ ⇒ ∆,Θ

G | Γ ⇒ ∆, 〈Θ〉
jumpT

G | Γ,⊥ ⇒ ∆
⊥L

G | Γ, p⇒ ∆, p init
G | Γ, A, A⇒ ∆

G | Γ, A⇒ ∆
ICL

G | Γ ⇒ ∆, A, A
G | Γ ⇒ ∆, A ICR

G | Γ, B⇒ ∆ G | Γ ⇒ ∆, A
G | Γ, A→ B⇒ ∆

→L
G | Γ, A⇒ ∆, B
G | Γ ⇒ ∆, A→ B

→R

G | Γ ⇒ ∆, [Σ C A] , [Σ C A]
G | Γ ⇒ ∆, [Σ C A]

ConS
G | Γ ⇒ ∆, [Σ, A, A C B]
G | Γ ⇒ ∆, [Σ, A C B]

ConB

G | Γ ⇒ ∆, Σ

G | Γ ⇒ ∆, [Σ C A] W
G | Γ, A⇒ ∆ G | Γ ⇒ B, ∆

G | Γ, A 4 B⇒ ∆
C
G | Σ, Γ ⇒ Π, ∆ | Ω⇒ Θ

G | Σ ⇒ Π | Ω, Γ ⇒ Θ, ∆
spl

G | Γ ⇒ ∆ | Σ, A 4 B⇒ Π

G | Γ, A 4 B⇒ ∆ | Σ ⇒ Π
absL

G | Γ ⇒ ∆ | Σ ⇒ A 4 B, Π
G | Γ ⇒ A 4 B, ∆ | Σ ⇒ Π

absR

SHVTU = {⊥L, init,→L,→R, ICL, ICR,ConS ,ConB} ∪ {4R,4L, com, jump,T, intrf, jumpU , jumpT }

SHVWU = SHVTU ∪ {W} SHVCU = SHVWU ∪ {C} SHVTA = SHVTU ∪ {absL, absR}

SHVWA = SHVWU ∪ {absL, absR} SHVCA = SHVCU ∪ {absL, absR, spl}

Fig. 3. The non-invertible standard calculi for extensions of VTU

The formula interpretation of an extended hypersequent is given by

ιe(Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n) := � ιe(Γ1 ⇒ ∆1) ∨ · · · ∨ � ιe(Γn ⇒ ∆n)

The rules of the non-invertible calculi for VTU and extensions are given in Fig. 3.

Theorem 18 (Soundness). If SHL ` G, then `L ιe(G), and if SHL ` ⇒ A, then A ∈ L.

Proof. As for Lem. 3, by showing that the rules preserve validity under ιe and using
validity of �A→ A. For the rules 4L,4R, com, jump,W,C this is similar as in [7]. For
rule T, if the interpretation of the conclusion is falsified inM,w, then there is a world
v ∈ SP(w) withM, v 

∧
Γ ∧ (A 4 B)∧¬

∨
∆∧�¬

∨
Θ. If ~B� = ∅, then in particular

M, v  �¬(
∨
Θ ∨ B), and the formula interpretation of the second premiss is falsified in

M,w. Otherwise, fromM, v  A 4 B we obtain a world x ∈
⋃

SP(v) =
⋃

SP(w) with
M, x  A, and from M, v  �¬

∨
Θ we also get thatM, ¬

∨
Θ. Hence the formula

interpretation of the first premiss is falsified atM,w. The remaining cases are similar. ut

Theorem 19 (Completeness). If A ∈ L then SHL ` ⇒ A.

Proof. By simulating derivations in HL. Most of the rules are simulated as in [7], except
for the rules trfm,Tm. For Tm the derivation is given in Fig. 4. The derivation of trfm only
replaces jumpT with jumpU . ut



G | Γ, [C 4 D]m
2 ⇒ ∆ | C1 ⇒

G | Γ, [C 4 D]m
2 ⇒ ∆ | C1 ⇒ ⊥

IW

G | Γ ⇒ ∆ | Cm ⇒ [D]m−1
1

G | Γ ⇒ ∆ | Cm ⇒ [D]m−1
1 ,⊥

IW

G | Γ ⇒ [D]m
1 , ∆

G | Γ ⇒ [D]m
1 ,⊥, ∆

IW

G | Γ ⇒ ∆,
〈
[D]m

1 ,⊥
〉 jumpT

G | Γ,Cm 4 Dm ⇒ ∆,
〈
[D]m−1

1 ,⊥
〉 T

....
G | Γ, [C 4 D]m

2 ⇒ ∆, 〈D1,⊥〉

G | Γ, [C 4 D]m
1 ⇒ ∆, 〈⊥〉

T

G | Γ, [C 4 D]m
1 ⇒ ∆

intrf

Fig. 4. The derivation of Tm in SHVTU.

7 Semantic completeness via invertible calculi

An alternative completeness proof for the logics without absoluteness is given semanti-
cally by constructing a countermodel from a failed proof search. For this we consider
the invertible versions SHi

L
of the calculi from Sec. 6, given in Fig. 5. Equivalence with

the non-invertible calculi follows from admissibility of the structural rules, including the
ones below, the proofs of which are standard by induction on the depth of the derivation:

G | Γ ⇒ ∆

G | Γ ⇒ ∆, [Σ C C] CW
G | Γ ⇒ ∆, [Σ C C]
G | Γ ⇒ ∆, [Σ, A C C] CIW

G | Γ ⇒ ∆

G | Γ ⇒ ∆, 〈Θ〉
TW

Lemma 20. The rules IW,EW,CW,CIW,TW are admissible in SHL.

Lemma 21. The rules ICL, ICR,ConB,ConS ,mrg are admissible in SHi
L

.

From Lemmas 20 and 21 it immediately follows that:

Proposition 22. The invertible and non-invertible calculi are equivalent.

Definition 23. An extended hypersequent G is VTU-saturated if it satisfies all of the
following conditions:

1. (4R) if Γ ⇒ ∆, A 4 B ∈ G, then [Σ, A C B] ∈ ∆ for some Σ;
2. (4L) if Γ,C 4 D⇒ ∆, [Σ C A] ∈ G, then D ∈ Σ or [Σ C C] ∈ ∆;
3. (com) if Γ ⇒ ∆, [Σ C A] , [Π C B] ∈ G, then Σ ⊆ Π or Π ⊆ Σ;
4. (jump) if Γ ⇒ ∆, [Σ C A] ∈ G, then A, Θ⇒ Σ,Π ∈ G for some Θ,Π;
5. (T) if Γ,C 4 D⇒ ∆, 〈Θ〉 ∈ G, then D ∈ Θ or C, Σ ⇒ Θ,Π ∈ G for some Σ,Π;
6. (intrf) if Γ ⇒ ∆ ∈ G, then 〈Θ〉 ∈ ∆ for some Θ;
7. (jumpU , jumpT ) if Γ ⇒ ∆, 〈Θ〉 ∈ G and Σ ⇒ Π ∈ G, then Θ ⊆ Π;
8. (→L) if Γ, A→ B⇒ ∆ ∈ G, then B ∈ Γ or A ∈ ∆;
9. (→R) if Γ ⇒ A→ B, ∆ ∈ G, then A ∈ Γ and B ∈ ∆;

It is VWU-saturated (resp. VCU-saturated) if it also satisfies (W) (resp. (C)) below:

1. (W) if Γ ⇒ ∆, [Σ C A] ∈ G, then Σ ⊆ ∆;



G | Σ ⇒ Π, A 4 B, [A C B]
G | Σ ⇒ Π, A 4 B

4i
R

G | Ω⇒ Θ, [Σ C A] | A⇒ Σ

G | Ω⇒ Θ, [Σ C A] jumpi

G | Ω,C 4 D⇒ Θ, [D, Σ C A] G | Ω,C 4 D⇒ Θ, [Σ C A] , [Σ C C]
G | Ω,C 4 D⇒ Θ, [Σ C A]

4i
L

G | Ω⇒ Θ, [Σ1, Σ2 C A] , [Σ2 C B] G | Ω⇒ Θ, [Σ1 C A] , [Σ1, Σ2 C B]
G | Ω⇒ Θ, [Σ1 C A] , [Σ2 C B] comi

G | Σ, A 4 B⇒ Π, 〈Θ〉 | A⇒ Θ G | Σ, A 4 B⇒ Π, 〈Θ, B〉
G | Σ, A 4 B⇒ Π, 〈Θ〉

Ti

G | Γ ⇒ ∆, 〈⊥〉

G | Γ ⇒ ∆
ini

trf

G | Γ ⇒ ∆, 〈Θ〉 | Σ ⇒ Θ,Π

G | Γ ⇒ ∆, 〈Θ〉 | Σ ⇒ Π
jumpi

U
G | Γ ⇒ ∆, 〈Θ〉 , Θ

G | Γ ⇒ ∆, 〈Θ〉
jumpi

T

G | Ω,⊥ ⇒ Θ
⊥L

G | Ω, p⇒ Θ, p init

G | Ω, A→ B, B⇒ Θ G | Ω, A→ B⇒ Θ, A
G | Ω, A→ B⇒ Θ

→i
L

G | Ω, A⇒ Θ, A→ B, B
G | Ω⇒ Θ, A→ B

→i
R

G | Γ ⇒ ∆, [Σ C A] , Σ
G | Γ ⇒ ∆, [Σ C A] Wi

G | Γ,C 4 D,C ⇒ ∆ G | Γ,C 4 D⇒ D, ∆
G | Γ,C 4 D⇒ ∆

Ci

G | Γ, A 4 B⇒ ∆ | Σ, A 4 B⇒ Π

G | Γ, A 4 B⇒ ∆ | Σ ⇒ Π
absi

L
G | Γ ⇒ A 4 B, ∆ | Σ ⇒ A 4 B, Π
G | Γ ⇒ A 4 B, ∆ | Σ ⇒ Π

absi
R

SHi
VTU = {⊥i

L, initi,→i
L,→

i
R} ∪ {4

i
R,4

i
L, comi, jumpi,Ti, ini

trf, jumpi
U , jumpi

T }

SHi
VWU = SHi

VTU ∪ {W
i} SHi

VCU = SHi
VWU ∪ {C

i} SHi
VTA = SHi

VTU ∪ {absi
L, absi

R}

SHi
VWA = SHi

VWU ∪ {absi
L, absi

R} SHi
VCA = SHi

VCU ∪ {absi
L, absi

R}

Fig. 5. The invertible standard calculi for extensions of VTU

2. (C) if Γ,C 4 D⇒ ∆ ∈ G, then C ∈ Γ or D ∈ ∆;

A VTU-saturated extended hypersequent G is called unprovable if it is not an instance of
(init) or (⊥L). We construct a countermodel from an unprovable VTU-saturated extended
hypersequent G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n as follows:

– W := {1, . . . , n}
–

�
p

�
:= {i ≤ n : p ∈ Γi}

The sphere systems SP(i) for i ≤ n are then defined as follows: Assume that Γi ⇒ ∆i is

Γi ⇒ ∆′i , [Σ1 C A1] , . . . , [Σk C Ak]

where ∆′i contains no conditional blocks. First observe that due to saturation condition 3
we may assume w.l.o.g. that Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk. Moreover, by condition 4 for every
j ≤ k there is a component Γm j ⇒ ∆m j ∈ G with A j ∈ Γm j and Σ j ⊆ ∆m j . Hence we set

SP(i) := {{mk}, {mk,mk−1}, . . . , {mk, . . . ,m1},W}

Call the resulting structureMG.

Lemma 24. For a VTU-saturated hypersequent G the structureMG is a VTU-model.



Proof. Nesting of spheres is obvious from the fact that {mk} ⊆ {mk,mk−1} ⊆ · · · ⊆

{mk, . . . ,m1} ⊆ W; reflexivity and uniformity follow from the fact that W ∈ SP(i). ut

Lemma 25. Let G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a VTU-saturated hypersequent and
letMG be define as above with world i associated to component Γi ⇒ ∆i. Then:

1. given a formula A, if A ∈ Γi thenMG, i  A
2. given a formula A, if A ∈ ∆i thenMG, i 6 A
3. given a block [Σ C C], if [Σ C C] ∈ ∆i, thenMG, i 6

∨
B∈Σ(B 4 C)

4. given a formula B, if 〈Θ, B〉 ∈ ∆i for some Θ, thenMG, i 6 ^B

Proof. We prove statements 1 and 2 by mutual induction on the complexity of A. The
base case and the propositional case are straightforward, hence we consider A = E 4 F.
Let i ∈ W be associated to Γi ⇒ ∆i with ∆i = ∆′i , [Σ1 C D1] , . . . , [Σk C Dk] , 〈Θ〉, where
∆′i contains no conditional block and Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σk.

– Suppose E 4 F ∈ Γi. For α ∈ SP(i), we have to show that α ∀ ¬F or α ∃ E.
In case α , W we have α = {mk, . . . ,m j} for some j ≤ k and each m` ∈ α
comes from a block [Σ` C D`] and is associated to a component D`, Λ` ⇒ Π`, Σ`
of G. By saturation condition (4L), either F ∈ Σ j or E = D j. In the former case
with Σ j ⊆ Σ j+1 ⊆ . . . Σk and the induction hypothesis we have MG,m` 6 F, for
` = j, . . . , k, showing that α ∀ ¬F. If E = D j, by induction hypothesis on the
component E, Λ j ⇒ Π j, Σ j, we getMG,m j  E, showing α ∃ E.
In case α = W, by saturation condition (T) either F ∈ 〈Θ〉, or E, Λ⇒ Π,Θ ∈ G for
some Λ,Π . In the latter case for the world j associated to the component E, Λ ⇒
Π,Θ by induction hypothesis on E we getMG, j  E, whence W ∃ E. In the former
case we have F ∈ 〈Θ〉. Any k ∈ W (including k=i) is associated to a component
Γk ⇒ ∆k, but by saturation condition (jumpT ,jumpU) we have Θ ⊆ ∆k, whence
F ∈ ∆k; by induction hypothesis on F we haveMG, k 6 F, showing W ∀ ¬F.

– Suppose E 4 F ∈ ∆i. Recall that SP(i) = {{mk}, {mk,mk−1}, . . . , {mk, . . . ,m1},W}
with each m` associated to a sequent D`, Λ` ⇒ Π`, Σ` ∈ G coming from a block
[Σ` C D`] ∈ ∆i, for ` = j, . . . , k. By saturation, there is j ≤ k with D j = F and E ∈ Σ j.
Consider m j associated to the component F, Λ j ⇒ Σ j, Π . By induction hypothesis
we get MG,m j  F. Since Σ j ⊆ Σ j+1 ⊆ · · · ⊆ Σk, we also get MG,m` 6 E, for
` = j, . . . , k. Thus for α = {mk, . . . ,m j} ∈ SP(i) we get α 6∀ ¬F and α 6∃ E,
showingMG, i 6 E 4 F.

The proof of 3 uses 2, recalling that a block is a disjunction of 4-formulas. The proof
of 4 uses 2 with an argument as in the proof of 1 for the case of α = W with B ∈ 〈Θ〉. ut

The countermodel construction described above can be extended to VWU and
VCU by modifying the definition of the model as follows. For VWU, let SP(i) :=
{{mk, i}, {mk,mk−1, i}, . . . , {mk, . . . ,m1, i},W}. For VCU, we add {i} to SP(i) for any i.
The proof of Lemma 25 can be easily extended to both cases (statements 1 and 2), using
the specific saturation conditions for these systems. We leave the details to the reader;
the case of Absoluteness will be handled in future work. From Lemma 25 we obtain:

Lemma 26. For L ∈ {VTU,VWU,VCU} let G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a
L-saturated hypersequent and letMG be defined as above, then



– for any i ∈ W associated to sequent Γi ⇒ ∆i we haveMG, i 6 ιe(Γi ⇒ ∆i)
– for any i ∈ W we haveMG, i 6 ιe(G)

To use these results in a decision procedure, we consider local loop checking: rules are
not applied if there is a premiss from which the conclusion is derivable using structural
rules. Since these are all admissible in SHi

L
, this does not jeopardise completeness.

Proposition 27. Backwards proof search with local loop checking terminates and every
leaf of the resulting derivation is an axiom or a saturated sequent.

Proof. By Lemmas 20 and 21, we may assume that the proof search only considers
duplication-free sequents, i.e., sequents containing duplicates neither of formulae nor of
blocks. By the subformula property, the number of duplication-free sequents possibly
relevant to a derivation of a sequent is bounded in the number of subformulae of that
sequent, and hence backwards proof search for G terminates. Furthermore, every leaf is
either an axiom or a saturated sequent, since otherwise another rule could be applied. ut

Theorem 28 (Completeness). If ιe(G) ∈ L, then SHL ` G forL ∈ {VTU,VWU,VCU}.

Proof. By Prop. 27 backwards proof search with root G terminates and every leaf of it is
an axiom or a saturated sequent. By invertibility of the rules each sequent G′ occurring
as a leaf is valid. But then G′ must an axiom, since otherwise, by Lem. 26 we can bulid
a countermodelMG′ falsifying ιe(G′) and hence by monotonicity also ιe(G). ut

We note that Prop. 27 gives rise to a (non-optimal) co-NEXPTIME-decision proce-
dure for validity: Since applying backwards proof search with local loop checking to an
input sequent ⇒ G terminates and every leaf of the resulting derivation is an instance of
init or ⊥L or a saturated sequent, in order to check whether ⇒ G is derivable is suffices
to non-determinstically choose a duplication-free L-saturated extended hypersequent
containing only subformulas of G and containing a component Γ ⇒ ∆,G. If this is not
possible, then backwards proof search will produce a proof of ⇒ G. But if it is possible,
then by Lem. 26 this hypersequent gives rise to a countermodel for G. Since the size of
duplication-free extended hypersequents consisting of subformulae of G is bounded ex-
ponentially in the number of subformulae of G, this gives the co-NEXPTIME complexity
bound. Of course it is known that the logics of this section are EXPTIME-complete [5].

8 Conclusion

In this work we have introduced to our knowledge the first internal hypersequent calculi
for Lewis’ conditional logics with uniformity and reflexivity, both in non-standard and in
standard form. While the former lend themselves to syntactic cut elimination, the latter
are amenable to a semantic completeness proof via countermodel construction from a
failed proof search and give rise to decision procedures for the considered logics.

While the treatment of these logics is an important step towards a comprehensive
proof-theoretic treatment of the whole family of Lewis’ logics, many interesting ques-
tions are still open. In particular, we plan to extend the semantic completeness proof
also to the logics with absoluteness. Further, by moving to the framework of grafted



hypersequents [10] we expect to be able to extend our results to the logics VU and
VNU. Concerning Lewis’ conditional logics, this would leave only the logics satisfying
Stalnaker’s assumption [13] lacking a satisfactory internal proof system. Their proof-
theoretic investigation will be subject of future research. Finally, we aim at providing
complexity-optimal proof methods for the logics under consideration. In particular, for
logics with absoluteness, one could make the blocks “global” to the whole hypersequent.
We conjecture that such calculi could yield complexity-optimal decision procedures.
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