Hilbert's Tenth Problem in Coq (FSCD 2019)

Dominique Larchey-Wendling and Yannick Forster

TICAMORE 2019 November 11

COMPUTER SCIENCE

Introduction

Hilbert's Tenth Problem H10

Diophantine equation = polynomial eq. over \mathbb{N} (or \mathbb{Z})

$$x^2 + 3z = yz + 2$$

■ H10 posed by David Hilbert in 1900:

"Man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen Zahlen lösbar ist."

Hilbert's Tenth Problem H10

Diophantine equation = polynomial eq. over \mathbb{N} (or \mathbb{Z})

$$x^2 + 3z = yz + 2$$

• H10 posed by David Hilbert in 1900:

"Man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen Zahlen lösbar ist."

- Essentially asked for a *decision procedure* for solvability of Diophantine equations
- Typical decision problems with a negative answer:
 - does a given Turing machine halt? (Halt)
 - does a given register/Minsky machine halt? (MM)
 - the Post correspondence problem (PCP)
 - ► is there a proof/term for this formula/type (FOL, syst. F)?

What is so intriguing about H10?

H10 simple to explain to mathematicians with no CS background

What is so intriguing about H10?

- H10 simple to explain to mathematicians with no CS background
- Hilbert's challenge was hard to solve because of a negative answer:
 - required inventing a formal concept of "decision procedure"
 - algorithms characterized by computability theory (CT, 30-40's)
 - ► a general notion of computable, and thus non-computable

A short history of H10

- 1900 Posed by David Hilbert
- 1944 Emil Post "this begs for an unsolvability proof"
- 1950s Martin Davis' conjecture: "Every r.e. set is Diophantine"
- 1953 Davis: "Every r.e. set is Diophantine up to one bounded \forall "
- 1959 Davis and Putnam: "Every r.e. set is exponentially Diophantine"
- 1961 Julia Robinson: "Every r.e. set is Diophantine if there is at least one Diophantine relation with exponential growth"
- 1970 Yuri Matiyasevich: "The Fibonacci sequence exhibits exponential growth and is Diophantine."

Resulting in the Davis-Putnam-Robinson-Matiyasevich theorem proving Davis' conjecture.

A library for synthetic undecidability in Coq

https://github.com/uds-psl/coq-library-undecidability

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P

- a decision problem $(X, P) : \Sigma(X : Type), X \to \mathbb{P}$
- Many-one reduction from (X, P) to (Y, Q)
 - computable function $f: X \to Y$ s.t. $\forall x, P x \leftrightarrow Q(f x)$
 - "computable" requirement replaced by "defined in CTT"
 - We write $P \preceq Q$ when such reduction exists
- Coq terms are computable (axiom-free)

A library for synthetic undecidability in Coq

https://github.com/uds-psl/coq-library-undecidability

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P

- a decision problem $(X, P) : \Sigma(X : Type), X \to \mathbb{P}$
- Many-one reduction from (X, P) to (Y, Q)
 - computable function $f: X \to Y$ s.t. $\forall x, Px \leftrightarrow Q(fx)$
 - "computable" requirement replaced by "defined in CTT"
 - We write $P \preceq Q$ when such reduction exists
- Coq terms are computable (axiom-free)
- Undecidability in Coq by many-one reductions
 - ▶ from a seed of undecidability Halt (single tape TM)
 - but also PCP (Forster&Heiter&Smolka, ITP 18)
 - BSM, MM, ILL (Forster&LW, CPP 19)
 - ► FOL (Forster&Kirst&Smolka, CPP 19) ...

Why add H10 to our library?

- MM halting already in our library (CPP 19)
- Stand-alone reduction from MM (Jones&Matijaseviĉ 84)
 - assuming only Matiyasevich theorem ($z = x^y$ Diophantine)
 - (Matiyasevich 2000) is a very detailed pen&paper proof
- H10 reduces to:
 - system F inhabitation (Dudenhefner&Rehof, TYPES 18)
 - second-order unification (Goldfarb 81)
- H10 allows for easy inter-reducibility proofs
 - enumerating Diophantine solutions is trivial to program
 - an easy way to strengthen Church's thesis
- The DPRM theorem:
 - Diophantine equations can encode any RE-predicate
- Another illustration of capabilities of modern proof assistants

First complete mechanisation of H10 and the DPRM theorem

Refactorisation of the proof via FRACTRAN, easing both explanation and mechanisation

Today

- 1 Overview of the reduction from Halt to H10, via FRACTRAN
- 2 Basics of FRACTRAN vs. MM (Conway 87)
- **3** Details on Diophantine encoding of FRACTRAN
- 4 H10 and the DPRM theorem
- 5 Mechanized Diophantine relations
- 6 Some remarks on the Coq code
- 7 Related works
- 8 Overview over the library and future work

Overview of the reduction

$\mathsf{Halt} \preceq \mathsf{MM} \preceq \mathsf{FRACTRAN} \preceq \mathsf{DIO}_{-}{}^{*} \preceq \mathsf{H10}$

$$\mathsf{Halt} \preceq \mathsf{MM} \preceq \mathsf{FRACTRAN} \preceq \mathsf{DIO}_{-}{}^{*} \preceq \mathsf{H10}$$

• Halt \leq MM via PCP

- ► Halt ≤ PCP via SRS (ITP 18)
- ▶ PCP ≤ MM via Binary Stack Machines (CPP 19)

$$\mathsf{Halt} \preceq \mathsf{MM} \preceq \mathsf{FRACTRAN} \preceq \mathsf{DIO}_{-}{}^{*} \preceq \mathsf{H10}$$

• Halt \leq MM via PCP

- Halt \leq PCP via SRS (ITP 18)
- ▶ PCP ≤ MM via Binary Stack Machines (CPP 19)
- $MM \preceq FRACTRAN$
 - following Conway (87)
 - removing self-loops from MM

 $\mathsf{Halt} \preceq \mathsf{MM} \preceq \mathsf{FRACTRAN} \preceq \mathsf{DIO}_{-}{}^{*} \preceq \mathsf{H10}$

• Halt \leq MM via PCP

- Halt \leq PCP via SRS (ITP 18)
- ► PCP ≤ MM via Binary Stack Machines (CPP 19)
- $MM \preceq FRACTRAN$
 - following Conway (87)
 - removing self-loops from MM
- FRACTRAN \leq DIO_*
 - Diophantine admissibility of RT-closure
 - two results as black-boxes (implemented):
 - * Matiyasevich proof (2000) ($z = x^y$)
 - ★ Admissibility of \forall^{fin} (Matiyasevich 1997)

 $\mathsf{Halt} \preceq \mathsf{MM} \preceq \mathsf{FRACTRAN} \preceq \mathsf{DIO}_{-}{}^{*} \preceq \mathsf{H10}$

• Halt \leq MM via PCP

- Halt \leq PCP via SRS (ITP 18)
- ► PCP ≤ MM via Binary Stack Machines (CPP 19)
- $MM \preceq FRACTRAN$
 - following Conway (87)
 - removing self-loops from MM
- FRACTRAN \leq DIO_*
 - Diophantine admissibility of RT-closure
 - two results as black-boxes (implemented):
 - * Matiyasevich proof (2000) ($z = x^y$)
 - ★ Admissibility of \forall^{fin} (Matiyasevich 1997)

Nice factorization of the quite monolithic proof of J&M84

Minsky machines and FRACTRAN

Minsky Machines (\mathbb{N} valued register machines)

Example (transfers α to β in 3 instructions, γ_0 spare register)

 $q: \texttt{DEC} \ lpha \ (3+q) \qquad q+1: \texttt{INC} \ eta \qquad q+2: \texttt{DEC} \ \gamma_0 \ q$

Minsky Machines (\mathbb{N} valued register machines) Example (transfers α to β in 3 instructions, γ_0 spare register)

 $q: \text{DEC } \alpha \ (3+q) \qquad q+1: \text{INC } \beta \qquad q+2: \text{DEC } \gamma_0 \ q$

- *n* registers of value in \mathbb{N} for a fixed *n*
- state: (PC, \vec{v}) $\in \mathbb{N} \times \mathbb{N}^n$
- instructions: $\iota ::= INC \alpha \mid DEC \alpha p$
- programs: $(q, [\iota_0; \ldots; \iota_k]) \iff q: \iota_0; \ldots; q+k: \iota_k$

Minsky Machines (\mathbb{N} valued register machines) Example (transfers α to β in 3 instructions, γ_0 spare register)

 $q: \texttt{DEC} \ lpha \ (3+q) \qquad q+1: \texttt{INC} \ eta \qquad q+2: \texttt{DEC} \ \gamma_0 \ q$

- *n* registers of value in \mathbb{N} for a fixed *n*
- state: (PC, \vec{v}) $\in \mathbb{N} \times \mathbb{N}^n$
- instructions: $\iota ::= INC \alpha \mid DEC \alpha p$
- programs: $(q, [\iota_0; \ldots; \iota_k]) \iff q: \iota_0; \ldots; q+k: \iota_k$
- Step semantics for INC and DEC (pseudo code)

INC
$$\alpha$$
: $\alpha \leftarrow \alpha + 1$; PC \leftarrow PC + 1
DEC αp : if $\alpha = 0$ then PC $\leftarrow p$
if $\alpha > 0$ then $\alpha \leftarrow \alpha - 1$; PC \leftarrow PC + 1

Minsky Machines (\mathbb{N} valued register machines) Example (transfers α to β in 3 instructions, γ_0 spare register)

 $q: \text{DEC } \alpha \ (3+q) \qquad q+1: \text{INC } \beta \qquad q+2: \text{DEC } \gamma_0 \ q$

- *n* registers of value in \mathbb{N} for a fixed *n*
- state: (PC, \vec{v}) $\in \mathbb{N} \times \mathbb{N}^n$
- instructions: $\iota ::= INC \alpha \mid DEC \alpha p$
- programs: $(q, [\iota_0; \ldots; \iota_k]) \iff q: \iota_0; \ldots; q+k: \iota_k$
- Step semantics for INC and DEC (pseudo code)

INC
$$\alpha$$
: $\alpha \leftarrow \alpha + 1$; PC \leftarrow PC + 1
DEC αp : if $\alpha = 0$ then PC $\leftarrow p$
if $\alpha > 0$ then $\alpha \leftarrow \alpha - 1$; PC \leftarrow PC + 1

 $\mathsf{MM}(n, \mathcal{M}, \vec{v}) := (1, \mathcal{M}) /\!\!/_{M} (1, \vec{v}) \downarrow \quad \text{(termination in any state)}$

FRACTRAN (computing with fractions in \mathbb{Q}^+)

Example (FRACTRAN program: list of fractions)

$$\left(\frac{455}{33}, \frac{11}{13}, \frac{1}{11}, \frac{3}{7}, \frac{11}{2}, \frac{1}{3}\right)$$

FRACTRAN (computing with fractions in \mathbb{Q}^+)

Example (FRACTRAN program: list of fractions)

$$\left(\frac{455}{33},\frac{11}{13},\frac{1}{11},\frac{3}{7},\frac{11}{2},\frac{1}{3}\right)$$

- Program: list of $\mathbb{N} \times \mathbb{N}$; State: a single $x \in \mathbb{N}$
- Step relation is simple to describe
 - ▶ pick the first p/q s.t. $x \cdot p/q \in \mathbb{N}$, and this is the new state
 - inductively, characterized by two rules:

$$\frac{q \cdot y = p \cdot x}{(p/q :: Q) //_F x \succ y} \qquad \frac{q \nmid p \cdot x \quad Q //_F x \succ y}{(p/q :: Q) //_F x \succ y}$$

FRACTRAN (computing with fractions in \mathbb{Q}^+)

Example (FRACTRAN program: list of fractions)

$$\left(\frac{455}{33},\frac{11}{13},\frac{1}{11},\frac{3}{7},\frac{11}{2},\frac{1}{3}\right)$$

- Program: list of $\mathbb{N} \times \mathbb{N}$; State: a single $x \in \mathbb{N}$
- Step relation is simple to describe
 - ▶ pick the first p/q s.t. $x \cdot p/q \in \mathbb{N}$, and this is the new state
 - inductively, characterized by two rules:

$$\frac{q \cdot y = p \cdot x}{(p/q :: Q) //_F x \succ y} \qquad \frac{q \nmid p \cdot x \qquad Q //_F x \succ y}{(p/q :: Q) //_F x \succ y}$$

Termination predicate

$$Q /\!\!/_F s \downarrow := \exists x, \ Q /\!\!/_F s \succ^* x \land \forall y, \neg (Q /\!\!/_F x \succ y)$$

Decision problem:

 $\mathsf{FRACTRAN}(Q, s) := Q /\!\!/_F s \downarrow$

- Distinct primes: $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ and $\mathfrak{q}_0, \mathfrak{q}_1, \ldots$
- Gödel coding of MM-states $\overline{(i, (x_0, \dots, x_{n-1}))} := \mathfrak{p}_i \mathfrak{q}_0^{x_0} \dots \mathfrak{q}_{n-1}^{x_{n-1}}$

- Distinct primes: $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ and $\mathfrak{q}_0, \mathfrak{q}_1, \ldots$
- Gödel coding of MM-states $\overline{(i, (x_0, \dots, x_{n-1}))} := \mathfrak{p}_i \mathfrak{q}_0^{x_0} \dots \mathfrak{q}_{n-1}^{x_{n-1}}$
- Fractional encoding of MM-instructions:

 $\overline{i: \text{INC } \alpha} := [\mathfrak{p}_{i+1}\mathfrak{q}_{\alpha}/\mathfrak{p}_i] \quad \overline{i: \text{DEC } \alpha j} := [\mathfrak{p}_{i+1}/\mathfrak{p}_i\mathfrak{q}_{\alpha}; \mathfrak{p}_j/\mathfrak{p}_i]$

• and of MM: $\overline{(i, [\iota_0; \ldots; \iota_k])} := \overline{i:\iota_0} + \cdots + \overline{i+k:\iota_k}$

- Distinct primes: $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ and $\mathfrak{q}_0, \mathfrak{q}_1, \ldots$
- Gödel coding of MM-states $\overline{(i, (x_0, \dots, x_{n-1}))} := \mathfrak{p}_i \mathfrak{q}_0^{x_0} \dots \mathfrak{q}_{n-1}^{x_{n-1}}$
- Fractional encoding of MM-instructions:

 $\overline{i: \text{INC } \alpha} := [\mathfrak{p}_{i+1}\mathfrak{q}_{\alpha}/\mathfrak{p}_i] \quad \overline{i: \text{DEC } \alpha j} := [\mathfrak{p}_{i+1}/\mathfrak{p}_i\mathfrak{q}_{\alpha}; \mathfrak{p}_j/\mathfrak{p}_i]$

- and of MM: $\overline{(i, [\iota_0; \ldots; \iota_k])} := \overline{i:\iota_0} + \cdots + \overline{i+k:\iota_k}$
- fails for i : DEC α i (self loops) because $p_i/p_i = 1$

- Distinct primes: $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ and $\mathfrak{q}_0, \mathfrak{q}_1, \ldots$
- Gödel coding of MM-states $\overline{(i, (x_0, \dots, x_{n-1}))} := \mathfrak{p}_i \mathfrak{q}_0^{x_0} \dots \mathfrak{q}_{n-1}^{x_{n-1}}$
- Fractional encoding of MM-instructions:

 $\overline{i: \text{INC } \alpha} := [\mathfrak{p}_{i+1}\mathfrak{q}_{\alpha}/\mathfrak{p}_i] \quad \overline{i: \text{DEC } \alpha j} := [\mathfrak{p}_{i+1}/\mathfrak{p}_i\mathfrak{q}_{\alpha}; \mathfrak{p}_j/\mathfrak{p}_i]$

- and of MM: $\overline{(i, [\iota_0; \ldots; \iota_k])} := \overline{i:\iota_0} + \cdots + \overline{i+k:\iota_k}$
- fails for i : DEC α i (self loops) because $p_i/p_i = 1$
- So first remove self-loops using an extra 0-valued spare register
 - every MM has an equivalent self-loop free MM
 - ▶ self-loops ~→ unconditional jump to a length-2 cycle
- Simulate self-loop free MM with FRACTRAN

- Distinct primes: $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ and $\mathfrak{q}_0, \mathfrak{q}_1, \ldots$
- Gödel coding of MM-states $\overline{(i, (x_0, \dots, x_{n-1}))} := \mathfrak{p}_i \mathfrak{q}_0^{x_0} \dots \mathfrak{q}_{n-1}^{x_{n-1}}$
- Fractional encoding of MM-instructions:

 $\overline{i: \texttt{INC } \alpha} := [\mathfrak{p}_{i+1}\mathfrak{q}_{\alpha}/\mathfrak{p}_i] \quad \overline{i: \texttt{DEC } \alpha j} := [\mathfrak{p}_{i+1}/\mathfrak{p}_i\mathfrak{q}_{\alpha}; \mathfrak{p}_j/\mathfrak{p}_i]$

- and of MM: $\overline{(i, [\iota_0; \ldots; \iota_k])} := \overline{i:\iota_0} + \cdots + \overline{i+k:\iota_k}$
- fails for i : DEC α i (self loops) because $p_i/p_i = 1$
- So first remove self-loops using an extra 0-valued spare register
 - every MM has an equivalent self-loop free MM
 - ▶ self-loops ~→ unconditional jump to a length-2 cycle
- Simulate self-loop free MM with FRACTRAN

Theorem (Simulating MM with FRACTRAN)

For any n registers Minsky machine P, one can compute a FRACTRAN program Q s.t. $(1, P) /\!\!/_M (1, [x_1; \ldots; x_n]) \downarrow \leftrightarrow Q /\!\!/_F \mathfrak{p}_1 \mathfrak{q}_1^{x_1} \ldots \mathfrak{q}_n^{x_n} \downarrow$

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

$$0: DEC x_0 2$$
1: DEC x_1 0
2:
$$(p_0, p_1, p_2, \ldots) = (2, 3, 5, \ldots) \qquad (q_0, q_1, \ldots) = (7, 11, \ldots)$$

$$\frac{3}{2 \cdot 7}, \frac{5}{2}$$

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

0: DEC
$$x_0$$
 2
1: DEC x_1 0
2:
 $(p_0, p_1, p_2, ...) = (2, 3, 5, ...) \quad (q_0, q_1, ...) = (7, 11, ...)$
 $\frac{5}{3 \cdot 11}$, $\frac{2}{3}$

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - ► x₀ is nullified, x₁ zero-valued spare register

- A small nullifying MM program
 - two DEC instructions starting at 0 :
 - x₀ is nullified, x₁ zero-valued spare register

- FRACTRAN step relation is Diophantine:
 - [] $/\!\!/_F x \succ y \leftrightarrow$ False
 - $\blacktriangleright p/q :: Q //_F x \succ y \quad \leftrightarrow \quad q \cdot y = p \cdot x \lor (q \nmid p \cdot x \land Q //_F x \succ y)$

- FRACTRAN step relation is Diophantine:
 - [] $/\!\!/_F x \succ y \leftrightarrow$ False
 - $\blacktriangleright p/q :: Q //_F x \succ y \quad \leftrightarrow \quad q \cdot y = p \cdot x \lor (q \nmid p \cdot x \land Q //_F x \succ y)$

• FRACTRAN halted at predicate is Diophantine:

►
$$\forall y, \neg([] //_F x \succ y) \leftrightarrow \text{True}$$

$$\forall y, \neg (p/q :: Q //_F x \succ y) \leftrightarrow q \nmid p \cdot x \land \forall y, \neg (Q //_F x \succ y)$$

- FRACTRAN step relation is Diophantine:
 - [] $/\!\!/_F x \succ y \leftrightarrow$ False
 - $\blacktriangleright p/q :: Q //_F x \succ y \iff q \cdot y = p \cdot x \lor (q \nmid p \cdot x \land Q //_F x \succ y)$

• FRACTRAN halted at predicate is Diophantine:

- ► $\forall y, \neg([] //_F x \succ y) \leftrightarrow \text{True}$
- $\blacktriangleright \quad \forall y, \neg (p/q :: Q //_F x \succ y) \quad \leftrightarrow \quad q \nmid p \cdot x \land \quad \forall y, \neg (Q //_F x \succ y)$

FRACTRAN halting is Diophantine

 $Q /\!\!/_F s \!\downarrow \; \leftrightarrow \; \exists x, \; \left(Q /\!\!/_F s \succ^* x \right) \; \land \; \forall y, \; \neg (Q /\!\!/_F x \succ y)$

- FRACTRAN step relation is Diophantine:
 - $\bullet \ [] //_F x \succ y \ \leftrightarrow \ \mathsf{False}$
 - $\blacktriangleright p/q :: Q //_F x \succ y \iff q \cdot y = p \cdot x \lor (q \nmid p \cdot x \land Q //_F x \succ y)$

FRACTRAN halted at predicate is Diophantine:

- ► $\forall y, \neg([] //_F x \succ y) \leftrightarrow \text{True}$
- $\blacktriangleright \quad \forall y, \neg (p/q :: Q //_F x \succ y) \quad \leftrightarrow \quad q \nmid p \cdot x \land \quad \forall y, \neg (Q //_F x \succ y)$

FRACTRAN halting is Diophantine

 $Q /\!\!/_F s \downarrow \ \leftrightarrow \ \exists x, \ \left(Q /\!\!/_F s \succ^* x \right) \ \land \ \forall y, \ \neg (Q /\!\!/_F x \succ y)$

- What closure properties do we need?
 - under polynomial equations (!)
 - under "does not divide" (Euclidean division)
 - under finitary conjunctions and disjunctions, existential quantification
 - under RT-closure (this one is hard!)

Hilbert's Tenth Problem

Theorem (H10)

The solvability of a Diophantine equation is undecidable

- MM halting is undecidable
 - by reduction from Halt via PCP
- FRACTRAN halting is undecidable
 - by reduction from MM
- FRACTRAN halting has a Diophantine representation
 - ▶ Given (Q, s) a FRACTRAN program and an initial state
 - ▶ compute a polynomial equation which has a solution iff $Q \parallel_F s \downarrow$
- a solver for H10 would decide FRACTRAN halting

The DPRM theorem

Theorem (DPRM)

MM-recognisable predicates are Diophantine

• $R: \mathbb{N}^n \to \mathbb{P}$ is recognised by some MM P with (n+m) registers:

 $R \ \vec{v} \leftrightarrow (1, P) /\!\!/_M (1, \vec{v} +\!\!+ \vec{0}) \downarrow$

• P is equivalent to FRACTRAN Q:

 $(1, P) /\!\!/_{\mathcal{M}} (1, [v_1; \ldots; v_n] +\!\!+ \vec{0}) \downarrow \leftrightarrow Q /\!\!/_F \mathfrak{p}_1 \mathfrak{q}_1^{v_1} \ldots \mathfrak{q}_n^{v_n} \downarrow$

[s; v₁; ...; v_n] → s = p₁q₁<sup>v₁</sub> ... q_n^{v_n} is Diophantine
 by induction on n, using Matiyasevich thm. (z = x^y is Diophantine)
 FRACTRAN halting s → Q //_F s↓ is Diophantine
</sup>

Mechanized Diophantine relations

How to deal smoothly with Diophantine relations

Diophantine Logic: an expressive language for Diophantine relations

- ▶ not only polynomial equations, but also \land , \lor , \exists
- automated recognition of *Diophantine shapes*
- ▶ possibility to expand the shapes: $x \nmid y$, $z = x^y$, \forall^{fin}
- privileged tool for establishing Diophantineness

How to deal smoothly with Diophantine relations

Diophantine Logic: an expressive language for Diophantine relations

- \blacktriangleright not only polynomial equations, but also $\land,\,\lor,\,\exists$
- automated recognition of *Diophantine shapes*
- ▶ possibility to expand the shapes: $x \nmid y$, $z = x^y$, \forall^{fin}
- privileged tool for establishing Diophantineness
- Elementary Diophantine constraints:
 - ► list of $u \doteq n \mid u \doteq v \mid u \doteq x_i \mid u \doteq v + w \mid u \doteq v \times w$
 - $u, v, w = \text{existential variables}, x_i \dots = \text{parameters}, n : \mathbb{N} = \text{constant}$
 - nice intermediate layer, e.g. 2nd-ord. unification or system F

How to deal smoothly with Diophantine relations

Diophantine Logic: an expressive language for Diophantine relations

- \blacktriangleright not only polynomial equations, but also $\land,\,\lor,\,\exists$
- automated recognition of Diophantine shapes
- ▶ possibility to expand the shapes: $x \nmid y$, $z = x^y$, \forall^{fin}
- privileged tool for establishing Diophantineness
- Elementary Diophantine constraints:
 - ► list of $u \doteq n \mid u \doteq v \mid u \doteq x_i \mid u \doteq v + w \mid u \doteq v \times w$
 - $u, v, w = \text{existential variables}, x_i \dots = \text{parameters}, n : \mathbb{N} = \text{constant}$
 - nice intermediate layer, e.g. 2nd-ord. unification or system F
- Single Diophantine Equation: $p \doteq q$
 - ▶ *p* and *q* are polynomials with variables, constants and parameters
 - H10 is the special case with no parameter

■ Conversion from Diophantine Logic ~→ Single Diophantine Equation

Diophantine Logic, syntax and semantics (DIO_FORM)

Example (De Bruijn encoding for bound variables)

$$\exists y, (y = 0 \land \exists z, y = z + 1) \quad \iff \quad \dot{\exists} (x_0 \doteq 0 \land \dot{\exists} (x_1 \doteq x_0 \dotplus 1))$$

Diophantine Logic, syntax and semantics (DIO_FORM)

Example (De Bruijn encoding for bound variables)

 $\exists y, (y = 0 \land \exists z, y = z + 1) \quad \iff \quad \dot{\exists} (x_0 \doteq 0 \land \dot{\exists} (x_1 \doteq x_0 \dotplus 1))$

• De Bruijn syntax with $V = \{x_0, x_1, \ldots\} \simeq \mathbb{N}$

$$\mathbb{D}_{expr} : p, q ::= x_i \in \mathsf{V} \mid n \in \mathbb{N} \mid p + q \mid p \times q \mathbb{D}_{form} : A, B ::= p = q \mid A \land B \mid A \lor B \mid \exists A$$

Diophantine Logic, syntax and semantics (DIO_FORM)

Example (De Bruijn encoding for bound variables)

 $\exists y, (y = 0 \land \exists z, y = z + 1) \quad \iff \quad \dot{\exists} (x_0 \doteq 0 \land \dot{\exists} (x_1 \doteq x_0 \dotplus 1))$

• De Bruijn syntax with $V = \{x_0, x_1, \ldots\} \simeq \mathbb{N}$

$$\mathbb{D}_{expr} : p, q ::= x_i \in \mathsf{V} \mid n \in \mathbb{N} \mid p \dotplus q \mid p \land q \mathbb{D}_{form} : A, B ::= p \doteq q \mid A \land B \mid A \lor B \mid \exists A$$

 \blacksquare Semantics with $\nu:V\to\mathbb{N}$

$$\begin{split} \llbracket x_i \rrbracket_{\mathcal{V}} &:= \mathbf{v} \, x_i \quad \llbracket n \rrbracket_{\mathcal{V}} := n \quad \llbracket p \dotplus q \rrbracket_{\mathcal{V}} := \llbracket p \rrbracket_{\mathcal{V}} + \llbracket q \rrbracket_{\mathcal{V}} \quad \dots \\ \llbracket A \stackrel{\land}{\wedge} B \rrbracket_{\mathcal{V}} &:= \llbracket A \rrbracket_{\mathcal{V}} \wedge \llbracket B \rrbracket_{\mathcal{V}} \qquad \llbracket p \doteq q \rrbracket_{\mathcal{V}} := \llbracket p \rrbracket_{\mathcal{V}} = \llbracket q \rrbracket_{\mathcal{V}} \\ \llbracket A \stackrel{\lor}{\vee} B \rrbracket_{\mathcal{V}} &:= \llbracket A \rrbracket_{\mathcal{V}} \vee \llbracket B \rrbracket_{\mathcal{V}} \qquad \llbracket a \rrbracket_{\mathcal{V}} := \exists n : \mathbb{N}, \llbracket A \rrbracket_{n \cdot \mathcal{V}} \\ h \ n \cdot \mathbf{v} \, (x_0) := n \text{ and } n \cdot \mathbf{v} \, (x_{1+i}) := \mathbf{v} \, x_i \text{ (De Bruijn extension)} \end{aligned}$$

wit

Diophantine polynomials and relations

Definition (Sub-types of $(V \to \mathbb{N}) \to \mathbb{N}$ and $(V \to \mathbb{N}) \to \mathbb{P}$)

$$\begin{split} \mathbb{D}_{\mathrm{P}} f &:= \sum p : \mathbb{D}_{\mathrm{expr}}, \left(\forall \nu, \llbracket p \rrbracket_{\nu} = f_{\nu} \right) & \text{ for } f : (\mathsf{V} \to \mathbb{N}) \to \mathbb{N} \\ \mathbb{D}_{\mathrm{R}} R &:= \sum A : \mathbb{D}_{\mathrm{form}}, \left(\forall \nu, \llbracket A \rrbracket_{\nu} \leftrightarrow R \nu \right) & \text{ for } R : (\mathsf{V} \to \mathbb{N}) \to \mathbb{P} \end{split}$$

Diophantine polynomials and relations

Definition (Sub-types of $(V \to \mathbb{N}) \to \mathbb{N}$ and $(V \to \mathbb{N}) \to \mathbb{P}$)

$$\begin{split} \mathbb{D}_{\mathrm{P}} f &:= \sum p : \mathbb{D}_{\mathrm{expr}}, \left(\forall \nu, \llbracket p \rrbracket_{\nu} = f_{\nu} \right) & \text{ for } f : (\mathsf{V} \to \mathbb{N}) \to \mathbb{N} \\ \mathbb{D}_{\mathrm{R}} R &:= \sum A : \mathbb{D}_{\mathrm{form}}, \left(\forall \nu, \llbracket A \rrbracket_{\nu} \leftrightarrow R \ \nu \right) & \text{ for } R : (\mathsf{V} \to \mathbb{N}) \to \mathbb{P} \end{aligned}$$

• closure properties for $\mathbb{D}_{P}/\mathbb{D}_{R}$: provided $\mathbb{D}_{P} f$ and $\mathbb{D}_{P} g$ we have $\mathbb{D}_{P} (\lambda \nu. \nu x_{i}) \quad \mathbb{D}_{P} (\lambda \nu. n) \quad \mathbb{D}_{P} (\lambda \nu. f_{\nu} + g_{\nu}) \quad \mathbb{D}_{P} (\lambda \nu. f_{\nu} \times g_{\nu})$ $\mathbb{D}_{R} (\lambda \nu. \text{True}) \quad \mathbb{D}_{R} (\lambda \nu. \text{False}) \quad \mathbb{D}_{R} (\lambda \nu. f_{\nu} = g_{\nu})$ $\mathbb{D}_{R} (\lambda \nu. f_{\nu} \leq g_{\nu}) \quad \mathbb{D}_{R} (\lambda \nu. f_{\nu} < g_{\nu}) \quad \mathbb{D}_{R} (\lambda \nu. f_{\nu} \neq g_{\nu})$

Diophantine polynomials and relations

Definition (Sub-types of $(V \to \mathbb{N}) \to \mathbb{N}$ and $(V \to \mathbb{N}) \to \mathbb{P}$)

$$\begin{split} \mathbb{D}_{\mathrm{P}} f &:= \sum p : \mathbb{D}_{\mathrm{expr}}, \left(\forall \nu, \llbracket p \rrbracket_{\nu} = f_{\nu} \right) & \text{ for } f : (\mathsf{V} \to \mathbb{N}) \to \mathbb{N} \\ \mathbb{D}_{\mathrm{R}} R &:= \sum A : \mathbb{D}_{\mathrm{form}}, \left(\forall \nu, \llbracket A \rrbracket_{\nu} \leftrightarrow R \ \nu \right) & \text{ for } R : (\mathsf{V} \to \mathbb{N}) \to \mathbb{P} \end{aligned}$$

• closure properties for $\mathbb{D}_{P}/\mathbb{D}_{R}$: provided $\mathbb{D}_{P} f$ and $\mathbb{D}_{P} g$ we have $\mathbb{D}_{P}(\lambda v. v x_{i}) \quad \mathbb{D}_{P}(\lambda v. n) \quad \mathbb{D}_{P}(\lambda v. f_{v} + g_{v}) \quad \mathbb{D}_{P}(\lambda v. f_{v} \times g_{v})$ $\mathbb{D}_{R}(\lambda v. True) \quad \mathbb{D}_{R}(\lambda v. False) \quad \mathbb{D}_{R}(\lambda v. f_{v} = g_{v})$ $\mathbb{D}_{R}(\lambda v. f_{v} \leq g_{v}) \quad \mathbb{D}_{R}(\lambda v. f_{v} < g_{v}) \quad \mathbb{D}_{R}(\lambda v. f_{v} \neq g_{v})$ • for \mathbb{D}_{R} : for $R, S : (V \to \mathbb{N}) \to \mathbb{P}$ and $T : \mathbb{N} \to (V \to \mathbb{N}) \to \mathbb{P}$ we have

$$\begin{split} & \mathbb{D}_{\mathrm{R}} R \to \mathbb{D}_{\mathrm{R}} S \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. R \nu \wedge S \nu) \\ & \mathbb{D}_{\mathrm{R}} R \to \mathbb{D}_{\mathrm{R}} S \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. R \nu \vee S \nu) \\ & (\forall \nu, S \nu \leftrightarrow R \nu) \to \mathbb{D}_{\mathrm{R}} R \to \mathbb{D}_{\mathrm{R}} S \\ & \mathbb{D}_{\mathrm{R}} (\lambda \nu. T (\nu x_{0}) (\lambda x_{i}. \nu x_{1+i})) \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. \exists u, T u \nu) \end{split}$$

Example (Does not divide is a Diophantine shape)

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \nmid g_{\nu} \right)$$

- $= f_{\nu} \nmid g_{\nu} \leftrightarrow f_{\nu} = 0 \land g_{\nu} \neq 0 \lor \exists a b, \ g_{\nu} = a \cdot f_{\nu} + b \land 0 < b \land b < f_{\nu}$
- Apply closure properties recursively
- Add the example as hint for the auto tactic

Example (Does not divide is a Diophantine shape)

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \nmid g_{\nu} \right)$$

• $f_{\nu} \nmid g_{\nu} \leftrightarrow f_{\nu} = 0 \land g_{\nu} \neq 0 \lor \exists a b, \ g_{\nu} = a \cdot f_{\nu} + b \land 0 < b \land b < f_{\nu}$

- Apply closure properties recursively
- Add the example as *hint for the auto tactic*

Theorem (Exponential (Matiyasevich 1970), proof from (Mat. 2000)) $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{P}} h \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. f_{\nu} = g_{\nu}^{h_{\nu}})$

Example (Does not divide is a Diophantine shape)

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \nmid g_{\nu} \right)$$

- $= f_{\nu} \nmid g_{\nu} \leftrightarrow f_{\nu} = 0 \land g_{\nu} \neq 0 \lor \exists a b, \ g_{\nu} = a \cdot f_{\nu} + b \land 0 < b \land b < f_{\nu}$
- Apply closure properties recursively
- Add the example as *hint for the auto tactic*

Theorem (Exponential (Matiyasevich 1970), proof from (Mat. 2000)) $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{P}} h \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. f_{\nu} = g_{\nu}^{h_{\nu}})$

Theorem (\forall^{fin} , proof from (Matiyasevich 1997)) $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. T (\nu x_0) (\lambda x_i. \nu x_{1+i})) \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. \forall u, u < f_{\nu} \to T u \nu)$

Example (Does not divide is a Diophantine shape)

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \nmid g_{\nu} \right)$$

- $= f_{\nu} \nmid g_{\nu} \leftrightarrow f_{\nu} = 0 \land g_{\nu} \neq 0 \lor \exists a b, \ g_{\nu} = a \cdot f_{\nu} + b \land 0 < b \land b < f_{\nu}$
- Apply closure properties recursively
- Add the example as hint for the auto tactic

Theorem (Exponential (Matiyasevich 1970), proof from (Mat. 2000)) $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{P}} h \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. f_{\nu} = g_{\nu}^{h_{\nu}})$

Theorem (\forall^{fin} , proof from (Matiyasevich 1997)) $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. T (\nu x_0) (\lambda x_i. \nu x_{1+i})) \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. \forall u, u < f_{\nu} \to T u \nu)$

Add both theorems to the hint database

RT-closure is a Diophantine shape

Theorem (iterations of a binary Diophantine relation)

With $f, g, i : (V \to \mathbb{N}) \to \mathbb{N}$ and $R : \mathbb{N} \to \mathbb{N} \to \mathbb{P}$

 $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{P}} i \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R \ (\nu \, x_1) \ (\nu \, x_0) \big) \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R^{i_{\nu}} f_{\nu} \ g_{\nu} \big)$

- Encode *R*-chains of length *i* in the digits of *c* in base *q*
- is_d $c q n d := d < q \land \exists a b, c = (a \cdot q + d) q^n + b \land b < q^n$
- is_s R c q i := $\forall n, n < i \rightarrow \exists u v, is_d c q n u \land is_d c q (1+n) v \land R u v$ ■ $R^i u v \leftrightarrow \exists q c, is_s R c q i \land is_d c q 0 u \land is_d c q i v$

RT-closure is a Diophantine shape

Theorem (iterations of a binary Diophantine relation)

With $f, g, i : (V \to \mathbb{N}) \to \mathbb{N}$ and $R : \mathbb{N} \to \mathbb{N} \to \mathbb{P}$

 $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{P}} i \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R \ (\nu x_1) \ (\nu x_0) \big) \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R^{i_{\nu}} f_{\nu} g_{\nu} \big)$

- Encode *R*-chains of length *i* in the digits of *c* in base *q*
- is_d $c q n d := d < q \land \exists a b, c = (a \cdot q + d) q^n + b \land b < q^n$
- is_s R c q i := $\forall n, n < i \rightarrow \exists u v, is_d c q n u \land is_d c q (1+n) v \land R u v$
- $\blacksquare R^{i} u v \leftrightarrow \exists q c, is_s R c q i \land is_d c q 0 u \land is_d c q i v$

Corollary (reflexive and transitive closure is a Diophantine shape) With $f, g: (V \to \mathbb{N}) \to \mathbb{N}$ and $R: \mathbb{N} \to \mathbb{N} \to \mathbb{P}$

 $\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R \ (\nu \, x_1) \ (\nu \, x_0) \big) \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R^* \, f_{\nu} \ g_{\nu} \big)$

Elementary Diophantine constraints (DIO_ELEM)

- list of \mathbb{D}_{cstr} : $u \doteq n \mid u \doteq v \mid u \doteq x_i \mid u \doteq v + w \mid u \doteq v \times w$
- $\blacksquare \ \phi: U \rightarrow \mathbb{N}$ for variables and $\nu: V \rightarrow \mathbb{N}$ for parameters

$$\ldots \quad \llbracket u \doteq x_i \rrbracket_{\nu}^{\varphi} := \varphi \ u = \nu \, x_i \quad \ldots$$

Elementary Diophantine constraints (DIO_ELEM)

- Ist of \mathbb{D}_{cstr} : $u \doteq n \mid u \doteq v \mid u \doteq x_i \mid u \doteq v \dotplus w \mid u \doteq v \times w$
- ${\scriptstyle \blacksquare} \ \phi: U \rightarrow \mathbb{N}$ for variables and $\nu: V \rightarrow \mathbb{N}$ for parameters

$$\ldots \quad \llbracket u \doteq x_i \rrbracket_{\nu}^{\varphi} \coloneqq \varphi \ u = \nu \, x_i \quad \ldots$$

- representation of $A : \mathbb{D}_{form}$ into $(\mathfrak{r}, \mathcal{E}) : U \times \mathbb{L} \mathbb{D}_{cstr}$
 - \mathcal{E} is always satisfiable (for any ν)
 - $(\mathfrak{r} \doteq 0) :: \mathcal{E}$ is satisfiable at ν iff $\llbracket A \rrbracket_{\nu}$
 - encode $\dot{\wedge}$ with $\dot{+}$ and $\dot{\vee}$ with $\dot{\times}$
 - encode \exists with a De Bruijn extension
 - encode $p \doteq q$ following the syntax tree

Theorem (Diophantine logic to elementary Diophantine constraints)

For $A : \mathbb{D}_{form}$ one can compute $\mathcal{E} : \mathbb{L} \mathbb{D}_{cstr}$ such that $\llbracket A \rrbracket_{\mathcal{V}} \leftrightarrow \exists \phi, \llbracket \mathcal{E} \rrbracket_{\mathcal{V}}^{\phi}$

• length of \mathcal{E} linearly bounded by the size of A

Single Diophantine Equation (DIO_SINGLE)

Lemma (Convexity identity) $\sum_{i=1}^{n} 2p_i q_i = \sum_{i=1}^{n} p_i^2 + q_i^2 \iff p_1 = q_1 \land \dots \land p_n = q_n$

- \blacksquare list of elementary constraints \rightsquigarrow single Diophantine equation
- the size is linear in the length, the degree is at most 4

Theorem (Diophantine relations as polynomial equations)

For any Diophantine relation one can compute an equivalent single Diophantine equation.

- \blacksquare the size is linearly bounded by the size of the witness in $\mathbb{D}_{\rm form}$
- the degree is at most 4

Code and related works

The Coq code

included in the library of undecidable problems:

https://github.com/uds-psl/coq-library-undecidability

■ also a "frozen" version hyperlinked with the paper:

https://uds-psl.github.io/H10

- devel. of significant size but not unreasonnable
- 12k loc addition to the library
 - ▶ 3k loc for Matiyasevich's results (z = x^y and ∀^{fin})
 - ▶ 5k loc the Diophantine, FRACTRAN, H10 and the DPRM
 - 4k loc addition to shared libs
- automation in Diophantineness proofs helped a lot
 - expanding Diophantine shape hints as they get proved

Related work

- Matiyasevich theorem in Lean (Carneiro 2018)
 - no link with computational models
- results about Pell's equation in Mizar (Pak 2017)
 - some basic results about Diophantine relations (Pak 2018)
- the DPRM in Isabelle (Stock et al. 2018-...)
 - still unfinished: https://gitlab.com/hilbert-10/dprm

Features of interactive proof assistants used

- 1 Interactive construction of (computable) functions in proof scripts
- 2 Basic automation providing proof search using hints
- 3 Automation for goals involving numbers over rings

Conclusion

Contributions and future work

